
DFTinker: Detecting and Fixing
Double-Fetch Bugs in an Automated Way

Yingqi Luo(B), Pengfei Wang, Xu Zhou, and Kai Lu

National University of Defense Technology, Changsha,
Hunan, People’s Republic of China

nudtlyq@163.com

Abstract. The double-fetch bug is a situation where the operating sys-
tem kernel fetches the supposedly same data twice from the user space,
whereas the data is unexpectedly changed by the user thread. It could
cause fatal errors such as kernel crashes, information leakage, and privi-
lege escalation. Previous research focuses on the detection of double-fetch
bugs, however, the fix of such bugs still relies on manual efforts, which is
inefficient. This paper proposes a comprehensive approach to automati-
cally detect and fix double-fetch bugs. It uses a static pattern-matching
method to detect double-fetch bugs and automatically fix them with
the support of the transactional memory (Intel TSX). A prototype tool
named DFTinker is implemented and evaluated with prevalent kernels.
Compared with prior works, it can automatically detect and fix double-
fetch bugs at the same time and owns a high code coverage and accuracy.

1 Introduction

The wide use of multi-core hardware is making concurrent programs increas-
ingly pervasive, especially in operating systems, network systems, and even IoT
devices. However, the reliability of such system is severely threatened by the
notorious concurrency bugs [5,12]. Among all the concurrency bugs, the double-
fetch bug is one of the most special and significant types.

Previous research focuses on the detection of double-fetch bugs. Dynamic
approaches [3,10] detect double-fetch bugs by tracing memory accesses. However,
such approaches are limited by the path coverage. They cannot be applied to
code that needs corresponding hardware to be executed, so device drivers cannot
be analyzed without access to the device or a simulation of it. Static approaches
detect double-fetch bugs based on the identification of transfer functions [9,
11], however, the accuracy and efficiency of such approaches are undesirable
as they lack runtime information and still rely on manual efforts to confirm
the bug. In addition, none of the previous works provides a practical solution
on automatically fixing double-fetch bugs except some prevention suggestions.
Thus, the fix of double-fetch bugs still relies on manually locating and rewriting
the source code, and an automatic solution is in urgent need.

This paper proposes a comprehensive approach to automatically detect and
fix double-fetch bugs. In the first phase, a static pattern-matching method based
c© Springer International Publishing AG, part of Springer Nature 2018
S. Chellappan et al. (Eds.): WASA 2018, LNCS 10874, pp. 780–785, 2018.
https://doi.org/10.1007/978-3-319-94268-1_67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94268-1_67&domain=pdf


DFTinker: Detecting and Fixing Double-Fetch Bugs in an Automated Way 781

on the Coccinelle engine is used to identify double-fetch bugs. In the second
phase, the identified bug is automatically fixed based on the support of the
Intel Transactional Synchronization Extension (TSX). In summary, the main
contribution of this paper is as follows:

– This paper proposes a comprehensive approach to automatically detect and
fix double-fetch bugs at one time. The approach can cover all architectures
in one detect execution, need no manual involvement, and achieve a more
accurate result than previous research.

– A prototype tool named DFTinker is implemented. We have made it publicly
available, hoping it can be useful for future study.

– DFTinker is evaluated with prevalent real kernels. Results show that it is
effective and efficient in automatically detecting and fixing double-fetch bugs.

2 Background

In modern operating systems, the kernel space is always separated from the
user space for safety [8]. Kernel code run in the kernel space and get data
from users if needed, it will use specific functions, termed transfer functions. In
Linux kernel, there are four typical transfer functions, get user(), put user(),
copy from user(), copy to user(). All their effects are fetching data or trans-
ferring data between the kernel space and the user space. Malicious changes
between two fetches many cause fatal errors in kernels, termed double-fetch
bugs.

Coccinelle [7] engine is a program matching and transformation engine. It
uses language SmPL (Semantic Patch Language) as rules to perform match-
ing and transformations in C code. Coccinelle was initially targeted towards
performing collateral evolutions in Linux, and it is widely used for finding and
fixing bugs in system code now. One of the advantages of Coccinelle engine is
path-sensitive, it is specially optimized for traversing paths.

Traditionally, transactional memory [1,2] is used to simplify concurrent pro-
gramming. It allows executing load and store instructions in an atomic way.
Transactional memory systems provide high-level instructions to developers so
as to avoid low-level coding, and this achieves a better access model to shared
memory in concurrent programming. Hardware transactional memory achieves
transactions by processors, caches, and bus protocol. It provides opportunities to
implement dynamic schedules according to specific CPU instructions. We choose
Intel TSX to ensure data consistency.

3 Design

3.1 Detection of Double-Fetch Bugs

As Sect. 2 states, double-fetch bugs and transfer functions are closely related,
and each fetch indicates an invocation of a transfer function. However, since



782 Y. Luo et al.

there are many complex situations in the kernel code, such as pointer change
and aliasing, double-fetch bug detection needs further and thorough analysis.

Wang et al. and Xu et al. all focus on four transfer functions to detect
double-fetch bugs, i.e., get user(), get user(), copy from user(), and
copy from user(), the functionality of which is transferring data from user

space to kernel space.

Table 1. Expanded transfer functions.

No. Name Type Parameter

1 unsafe get user macro dst, src, err

2 copy in user macro des, src, len

3 copy user function dst, src, len

4 copy user zeroing function dst, src, len

. . .

However, these rules are not strong enough to cover all double-fetch bugs.
We improve the rules as follows.

Add More Transfer Functions. Wang et al. used only four transfer func-
tions in his experiment, get user(), get user(), copy from user(), and
copy from user(). However, there are also many other functions containing

transfer functions, and their targets are transferring data from user space to
kernel space as well, such as memdup user() mentioned above. Table 1 shows 4
of 15 functions (and macros) we include to detect double-fetch bugs.

Fix Incomplete Rules. Rules which Wang et al. proposed are theoretically cor-
rect. However, in the implementation phase, they were achieved incompletely,
which leaded false negatives. Many cases are missed because of careless imple-
mentation. We fixed these rules and reduced the false negative rate.

Remove More Non-double-Fetch Bugs. Wang et al. used his pattern rules
find 90 candidates files in total, it’s still a little heavy for technicians to check
manually. To lower false positive rate, more situations are added to remove those
non-double-fetch bugs:

1. The procedure returns after the first fetch. The first situation is
when the first fetch is in a IF statement. This case will be matched with
prior rules apparently. However, there is a RETURN statement after the first
fetch, that means, the second fetch will never be executed if the first fetch is
executed. Thus, this is not a double-fetch bug actually. There are many cases
like this in the kernel code.
2. Two fetches are in the different branches. Another situation is when
the two fetches are in the different branches, just like a SWITCH statement.
These conditions can never be satisfied at the same time, so this situation is
also a non-double-fetch bug situation.



DFTinker: Detecting and Fixing Double-Fetch Bugs in an Automated Way 783

3.2 Automated Fixing with Intel TSX

Previous research only proposed suggestions on preventing double-fetch bugs [9,
11], such as don’t copy the header twice. However, we need a practical solution
to automatically fix the bug.

We implement fixing function with Intel’s Restricted Transactional Memory
(RTM) software interface. RTM defines three new instructions: XBEGIN, XEND,
and XABORT. Programmers can use XBEGIN and XEND to specify the begin and
end of a hardware transaction and use XABORT to explicitly abort a transaction.

As Coccinelle engine is accurate in locating lines of double-fetch bugs in the
code, it is easy to fix LOCK() and UNLOCK() operations to the code. According to
the feature of transaction memory, all operations between LOCK() and UNLOCK()
will be executed in a transaction, execution results will be committed if there
are no conflicts. In other words, if there is a malicious user changes the data
in the user space after the first fetch, all operations in the transaction will be
aborted and rerun from LOCK(), which guarantees the consistency of the data.

4 Implementation

DFTinker consists of three parts, a detector, a patcher and a supervisor. The
detector is used for detecting double-fetch bugs. It is implemented as SmPL
files and the Coccinelle engine. The Coccinelle engine will use these SmPL files
as pattern rules to find double-fetch bugs and filter out non-double-fetch bugs
cases. The patcher is used for fixing the double-fetch bugs, it is made up of header
files and SmPL files. Header files are used for providing prevention interfaces and
SmPL files are used for providing rules for fixing. The last part is the supervisor,
which consists of Linux shell scripts. The supervisor is used for supervising the
Coccinelle engine and sorting out the results of the experiments, so as to leave
the process fully automated.

5 Evaluation

5.1 Detection of Double-Fetch Bugs

The experiments are conducted on a Linux laptop running Ubuntu 16.04 x64,
with one Intel i7-7700HQ 2.6 GHz processor, 8 GB of memory, 250 GB SSD. We
use Linux 4.14.10, OpenBSD 6.2, FreeBSD 11.1, Android 7.0.0 (kernel version
3.18), and Darwin 10.13.3, which were the relatively newer version when the
experiments were conducted.

DFTinker is applied to the five prevalent open source kernels. The statistical
result1 is shown in Table 2. We find 24 double-fetch bugs in the Linux kernel,
12 bugs in the FreeBSD kernel, 41 bugs in the Android kernel, 4 bugs in the
Darwin kernel. Note that DFTinker can identify all known double-fetch bugs in
the Linux kernel including Wang et al.’s work and Xu et al.’s work, however, our
approach is more concise in contrast, which proves DFTinker’s efficiency.
1 Due to the space limitation of the page, the full detailed results of the double-fetch

bugs are available at https://github.com/luoyyqq.

https://github.com/luoyyqq


784 Y. Luo et al.

Table 2. Statistical results of detection of double-fetch bugs.

Kernel Version Files Size
checking

Type
selection

Validity
checking

Reacquisition Total
bugs

Linux 4.14.10 45614 13 5 4 2 24

FreeBSD 11.1 38811 7 2 2 1 12

OpenBSD 6.2 29704 0 0 0 0 0

Android 7.0.0 (3.18) 30479 14 7 5 15 41

Darwin 10.13.3 49105 3 1 0 0 4

5.2 Automated Fixing with Intel TSX

In our experiments, we fix target functions using DFTinker and modify the data
between two fetches using a user thread. The results show that the data fetched
at the second time is same as the first time, which proves that DFTinker is
effective in protecting double-fetch bugs.

6 Discussion

Jurczyk and Coldwind [3,4] used a dynamic approach in their Bochspwn project
to study double-fetch bugs in Windows. By tracing memory accesses, they suc-
cessfully found double-fetch bugs in the Windows kernel. However, such dynamic
approaches can not test code under strict conditions. Our static approach has a
better code coverage and can detect double-fetch bugs in the drivers, where the
dynamic approaches are incapable of.

Schwarz et al. [6] proposed a method using cache-attack and kernel-fuzzing
techniques to detect, exploit, and eliminate double-fetch bugs in Linux syscalls.
However, their approach is limited to Linux syscalls, whereas large numbers of
the double-fetch bugs occur in non-syscall functions, such as functions in drivers,
are missed. Thus, their approach suffers from a low code coverage, whereas our
approach is free from that. As for DropIt they implement, our approach can fix
double-fetch bugs automatically instead of manual fixing.

Xu et al. [11] proposed a formal definition of double-fetch bugs and used a
static analysis based on LLVM IR and symbolic execution to detect such bugs.
However, their definition takes all the potential situations into consideration,
which are not currently buggy but only have the potential to turn into bugs
when the code is updated. Besides, their approach needs to compile the source
code to LLVM IR and specify the target architecture. Thus, it detects only one
architecture at one time, leading to the miss of bugs such as CVE-2016-6130.
Our approach has a better code coverage, which can analyze the source code of
all the architecture at one time.

Although DFTinker achieves a decent performance in detecting and fixing
double-fetch bugs, it relies on the availability of the source code, which is suitable
for in-house testing. We will take the binary situations into consideration in the
future work.



DFTinker: Detecting and Fixing Double-Fetch Bugs in an Automated Way 785

7 Conclusion

This paper proposes an approach to automatically detect and fix double-fetch
bugs. We implement a prototype named DFTinker and evaluate it with real ker-
nels. Experiments show that DFTinker is effective and efficient in automatically
detecting and fixing double-fetch bugs. DFTinker detected 81 cases in prevalent
kernels and succeed in defending malicious data tampering.

Acknowledgements. This work is partially supported by The National Key Research
and Development Program of China (2016YFB0200401), by program for New
Century Excellent Talents in University, by National Science Foundation (NSF)
China 61402492, 61402486, 61379146, 61472437, by the laboratory pre-research fund
(9140C810106150C81001).

References

1. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D.: Transactional memory coher-
ence and consistency. In: Proceedings of the International Symposium on Computer
Architecture, pp. 102–113 (2004)

2. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures, pp. 289–300 (1993)

3. Jurczyk, M., Coldwind, G.: Bochspwn: identifying 0-days via system-wide mem-
ory access pattern analysis. https://media.blackhat.com/us-13/us-13-Jurczyk-
Bochspwn-Identifying-0-days.pdf

4. Jurczyk, M., Coldwind, G.: Identifying and exploiting windows kernel race con-
ditions via memory access patterns. Technical report, Google Research (2013).
http://research.google.com/pubs/archive/42189.pdf

5. Ma, X., Wang, Y., Qiu, Q., Sun, W., Pei, X.: Scalable and elastic event matching
for attribute-based publish/subscribe systems. Future Gener. Comput. Syst. 36(7),
102–119 (2014)

6. Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., Mangard,
S.: Automated detection, exploitation, and elimination of double-fetch bugs using
modern CPU features (2017)

7. Stuart, H.: Hunting bugs with Coccinelle. Masters thesis (2008)
8. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity

operating systems. ACM Trans. Comput. Syst. 23(1), 77–110 (2005)
9. Wang, P., Krinke, J., Lu, K., Li, G., Dodier-Lazaro, S.: How double-fetch situations

turn into double-fetch vulnerabilities: a study of double fetches in the Linux kernel.
In: Usenix Security Symposium (2017)

10. Wilhelm, F.: Tracing privileged memory accesses to discover software vulnerabili-
ties. Master’s thesis, Karlsruher Institut für Technologie (2015)

11. Xu, M., Qian, C., Lu, K., Michael, B., Taesoo, K.: Precise and scalable detection
of double-fetch bugs in OS kernels. http://www-users.cs.umn.edu/∼kjlu/papers/
deadline.pdf

12. Yu, B., Yang, L., Wang, Y., Zhang, B., Cao, Y., Ma, L., Luo, X.: Rule-based
security capabilities matching for web services. Wirel. Pers. Commun. 73(4), 1349–
1367 (2013)

https://media.blackhat.com/us-13/us-13-Jurczyk-Bochspwn-Identifying-0-days.pdf
https://media.blackhat.com/us-13/us-13-Jurczyk-Bochspwn-Identifying-0-days.pdf
http://research.google.com/pubs/archive/42189.pdf
http://www-users.cs.umn.edu/~kjlu/papers/deadline.pdf
http://www-users.cs.umn.edu/~kjlu/papers/deadline.pdf

	DFTinker: Detecting and Fixing Double-Fetch Bugs in an Automated Way
	1 Introduction
	2 Background
	3 Design
	3.1 Detection of Double-Fetch Bugs
	3.2 Automated Fixing with Intel TSX

	4 Implementation
	5 Evaluation
	5.1 Detection of Double-Fetch Bugs
	5.2 Automated Fixing with Intel TSX

	6 Discussion
	7 Conclusion
	References




