
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/4345

A Survey of The Double-Fetch Vulnerabilities

Pengfei WANG2∗, Kai LU 123, Gen LI 2, Xu ZHOU23

1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense
Technology, Changsha 410073, P.R.China

2College of Computer, National University of Defense Technology, Changsha 410073, P.R.China
3Collaborative Innovation Center of High-Performance Computing, National University of Defense Technology,

Changsha 410073, P.R. China

SUMMARY

Race conditions widely exist in concurrent programs, and concurrency errors caused by harmful races could
lead to severe system failures. A double fetch is a typical situation when the system kernel inevitably accesses
user space data multiple times, and it turns into a vulnerability when the data consistency is violated under
a special race condition between kernel and user space. In this survey, we present the first (to the best of our
knowledge) comprehensive study on double-fetch vulnerabilities in the real world. Our study is based on
the investigation of 91 real-world double-fetch vulnerabilities collected from the CVE database and other
relevant reports, which covers a period of recent 12 years. Our work reveals some interesting findings on
the double-fetch vulnerabilities, ranging from the various occurrences across different kernels and system
levels to the involvement of specific patterns. We also divide the consequences that are usually caused by the
double-fetch vulnerabilities into four categories and discuss each, summarize viable exploitation techniques
from existing works, provide useful guidances to detect and practical strategies to prevent double-fetch
vulnerabilities.
Copyright c© 2017 John Wiley & Sons, Ltd.

Received: Jun. 9th 2017, Accepted: Sept. 6th 2017.

KEY WORDS: Double-Fetch Vulnerability; Race Condition between Kernel and User Space; Double-
Fetch Exploitation; CVE Database Survey

1. INTRODUCTION

The widely use of multi-core hardware is making concurrent programs increasingly pervasive,
especially in operating systems, real-time systems, and computing intensive systems. Concurrency
not only improves processing efficiency but also facilitates program design. However, concurrent
programs are also notorious for the difficulties in detecting hidden concurrency errors during in-
house testing, which are introduced by the non-deterministic interleaving of the thread executions.

Data races are race conditions occur at memory access level, which are the most common causes
of the concurrency errors. A data race occurs when two threads are accessing the same memory
location, at least one of the two accesses is a write, and the relative ordering of the two accesses is not
enforced by any synchronization primitives [1]. Data races could lead to hard-to-reproduce errors
that are time-consuming to find and fix. They widely exist in concurrent programs, such as industrial

∗Correspondence to: College of Computer, National University of Defense Technology, Changsha 410073, P.R.China.
E-mail: pfwang@nudt.edu.cn
This is the peer reviewed version of the following article: P.Wang et al. (2017) A Survey of The Double-Fetch
Vulnerabilities, which has been published in final form at https://doi.org/10.1002/cpe.4345. This article may be used
for non-commercial purposes in accordance withWiley Terms and Conditions for Use of Self-ArchivedVersions.

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 P. WANG ET AL.

Kernel Function

(syscall)

Switch the value

Memory data

First fetch to

verify

Racing Thread

Second fetch

to use
Kernel Space

Time Window

User Space

User Thread

Figure 1. Description of A Double-fetch Vulnerability

control software, which can cause severe failures and real-world disasters, such as the Therac-25
accident[2], the jeopardy of Mars Pathfinder [3], the 2003 North American blackout[4], and the
2012 Facebook IPO delay incident[5], all of them resulted in significant casualties or property loss
in real world.

In addition to the regular cases that occur among threads, races also exist between the kernel and
user space, which is a special situation that very few work has been conducted on before. In 2008,
Fermin J. Serna [6] firstly introduced the term ”double fetch” to describe this situation. A double
fetch occurs when the kernel (e.g. via a syscall) reads the same value that resides in the user space
twice, the first time to verify the value or establish the relationship with the kernel while the second
time to use the value [7]. As Figure 1 shows, a double fetch turns into a double-fetch vulnerability
when there is a special race condition that occurs between kernel and user space, under which a
concurrently running user thread changes the value within the time window between the two kernel
reads. Then, when the kernel function fetches the value a second time to use, it gets a different one.
The data inconsistency introduced by the double-fetch vulnerabilities could lead to problematic
consequences such as privilege escalation, information leakage, kernel crash, etc. The famous
KHOBE attack [8] is a typical application of the double-fetch vulnerability to bypass the security
software on the system. Jurczyk and Coldwind [7] were the first to detect and exploit double-fetch
vulnerabilities in their Bochspwn project. They detect double-fetch vulnerabilities based on memory
access tracing and discovered a series of double-fetch vulnerabilities in the Windows kernel. They
also suggested that there are still likely tens of such vulnerabilities in the kernel, especially the
IOCTL handlers and third-party drivers.

In order to get a thoroughly understanding of the double-fetch vulnerability so as to prevent it, we
conduct this comprehensive study. Our study is based on the investigation of 91 real-world double-
fetch vulnerabilities collected from the CVE (Common Vulnerabilities and Exposures) database and
other reports and patches from relevant repositories and archives. These vulnerabilities’ occurrences
cover a period of recent 12 years (date from 2005). By carefully examining each vulnerability case,
we can gain deep insight into questions such as ”How a double-fetch vulnerability happens?”, ”In
what situations is a double-fetch vulnerability prone to happen?”, ”What consequences could a
double-fetch vulnerability cause?”, ”How to exploit a double-fetch vulnerability?”, ”How to defend
against the double-fetch vulnerabilities?” and in general gain a new level of insight into the common
approaches and issues that underlie. To sum up, we make the following contributions:

• First comprehensive study of the double-fetch vulnerabilities in real world. Our work
provides the first (to the best of our knowledge) comprehensive study of the double-fetch
vulnerabilities in the real world. We investigate 91 (as many as we can find) real-world
double-fetch vulnerabilities collected from the CVE database and other relevant reports.
For each case, we examine the reports, corresponding source code, related patches and
programmers’ discussion, all of which together provide us a relatively thorough understanding
of the patterns, manifestation conditions, and other characteristics of the double-fetch
vulnerabilities.

• Diversity of double-fetch vulnerabilities. We demonstrated the diversity by providing and
analyzing various cases, which led to interesting findings: Double-fetch vulnerabilities are
fundamental problems that are independent of any program languages or operating systems.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 3

Their occurrences range from source code to pre-processed binaries, and even the peripheral
devices can cause double-fetch vulnerabilities in the I/O memory. Double-fetch vulnerabilities
involve certain patterns, such as ”size checking” and ”shallow copy”, etc.

• Publicly available double-fetch vulnerability dataset. Beyond these results, another
outcome of our work is a local dataset of the double-fetch vulnerabilities, which
contains all the cases and information of our work. We make it publicly available
(https://github.com/wpengfei/df dataset.git) for further study by kernel developers and
security researchers.

• Strategies on exploitation, detection and prevention. We concluded four categories of
consequences that the double-fetch vulnerabilities usually cause. We summarized viable
exploitation techniques from existing works. We provided guidance on detection in two
categories of dynamic and static approaches, which include how these approaches work, the
advantages and disadvantages, and suggestions in implementation. We also gave prevention
suggestions based on the anlysis of real-world double-fetch vulnerability patches we
collected.

The rest of the paper is organized as follows: Section 2 discusses the related works of this topic.
Section 3 presents the motivation of this work and the methodology we adopt. Section 4 introduces
various situations in which a double-fetch vulnerability could happen, which reveals some
interesting findings. Section 5 discusses the categorized consequences, the exploitation techniques,
and implications of detection as well as strategies for prevention, followed by conclusions.

2. RELATED WORKS

So far, only limited research has been conducted on the research of double-fetch vulnerabilities,
which includes Bochspwn [7] and the work of Wilhelm [9]. There are also some works that closely
related to double-fetch vulnerabilities, such as the TOCTOU and KHOBE attack.

Jurczyk and Coldwind [7] carried out the first study on double-fetch vulnerabilities in their
Bochspwn project. They instrumented the Windows kernel to identify double-fetch vulnerabilities
dynamically by observing read operations on the same user space address within a very short time.
They found real double-fetch vulnerabilities from Windows and proposed exploitation techniques.
However, their analysis and findings were limited to Windows and their dynamic approach was
limited to the code coverage. In our work, we give a more thorough study on various double-
fetch vulnerability examples, including cases from preprocessed code and case from I/O memory.
Besides, we also argued that static approaches are necessary under certain circumstances, such as
for driver code when the hardware is unavailable for dynamic approaches, which they neglected.

Wilhelm [9] used an approach similar to the Bochspwn project to analyze memory access
pattern of para-virtualized devices’ backend components. His analysis discovered three novel
security vulnerabilities in security critical backend components. Interestingly, one of the discovered
vulnerabilities does not exist is the source code but is introduced through compiler optimization
(see the discussion in Section 4.4.2) because the compiler optimizes the code in a way that a second
fetch is conducted instead of reusing the value from the first fetch. However, although Wilhelm’s
work enriches the diversity of double-fetch vulnerability analysis, as a dynamic approach based
detection work, it still lacks the thorough analysis of the double-fetch vulnerabilities, such as the
specific patterns, the special case in I/O memory and the exploitation techniques. We will give a
more comprehensive study on double-fetch vulnerabilities by an investigation of various real-world
cases as well as an introduction to exploitation techniques and detection strategies.

A Time-Of-Check to Time-Of-Use (TOCTOU in short) race condition happens when a program
checks for a particular characteristic of an object, so as to take some action based on the assumption
that the characteristic still holds, whereas it actually does not hold any longer [10]. The data
inconsistency in TOCTOU is usually caused by a race condition, which results from improper
synchronized concurrent accesses to a shared object. There are varieties of shared objects in the
computer system, such as files, sockets [11] and memory locations [12]. TOCTOUs are most

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

4 P. WANG ET AL.

common in Unix file system, which can date back to the 1990s. Numerous approaches [13] [14]
[15] [16] have been proposed to solve this problem, but there is still no general, portable, secure
way to solve it in the file system[17] because these approaches have to take into consideration
of many specific aspects of this issue, such as the mapping between filenames and inode, the
resolution of symbolic links, the UNIX file-system interface and implementation, etc. A double-
fetch vulnerability is different from a typical TOCTOU issue that are specific to the shared objects
(e.g. a file or a socket), because a double-fetch vulnerability focuses on the interaction between
kernel and user space at memory access level, which is more likely to cause security related
problems, and previous TOCTOU studies that specified for file system or other shared objects are
not applicable anymore for the double-fetch issue. Our work gives a comprehensive study on double-
fetch vulnerabilities, which includes the causes and consequences of a double-fetch vulnerability,
as well as the approaches of double-fetch vulnerability exploitation and detection.

Yang et al [12] concentrated on concurrency errors under TOCTOU situations, and they believed
such kind of bugs could be exploited to carry out concurrency attacks. They also studied some
real cases to catalog concurrency attacks and pointed out that the risk of concurrency attacks
is proportional to the duration of the vulnerability window. Their work is very similar to the
double-fetch vulnerability we study except they consider user applications while a double-fetch
vulnerability involves the kernel, which could cause a more serious impact. Their work is
limited to a few user application analysis without practical description. In our work, we give a
more comprehensive study with much more cases as well as analysis of causes, consequences,
exploitation and detection strategies.

A double-fetch vulnerability in nature is caused by a race condition at memory access level.
Plenty of works has been conducted on race conditions at memory access level (data races). Static
approaches analyze the program without running it [18] [19] [20] [21] [22] [23] [24]. They can find
the corner cases because of the better coverage of the code and the overall knowledge of the program.
The major disadvantage is the false reports generated due to the lack of the program’s full runtime
execution context. Dynamic approaches actually execute the program to verify the races [25] [26]
[27], checking whether a race could cause program failure in executions. They control active thread
scheduler to trigger specific interleaving to increase the probability of manifestation [28, 24].
Runtime overhead is a severe problem, and testing of the driver code requires the support of
specific hardware. However, A double-fetch vulnerability is caused by a special race condition
between kernel and user space, and most of the previous race detection works did not take into
consideration of this situation. Therefore, we give the first comprehensive study that specific to the
characteristics of double-fetch vulnerabilities. In our work, we give a thorough analysis of double-
fetch vulnerabilities based on various of real-world cases, including the causes, consequences, and
specific patterns. We also provide exploitation and detection strategies that are specific to double-
fetch vulnerabilities.

3. MOTIVATION

3.1. Racing Between Kernel and User Space

In the modern computer system, memory is divided into kernel space and user space. The kernel
space is where the kernel code is stored and executes under, whilst the user space is a set of locations
where normal user processes run. Since the kernel address space and the user address space are both
virtual and physical isolated, special schemes are provided by the operating system to exchange data
between kernel and user space. In Windows, we can use device input and output control (IOCTL)
method or shared memory object method to exchange data between kernel and user space [29],
which are very similar to the shared memory approach among user spaces, and data is accessed
by dereferencing a pointer. While in Linux, some specific functions are provided to undertake
this task. For instance, Linux has such functions as copy_from_user(), copy_to_user(),
get_user(), put_user() etc. Here we use term copy functions to represent the functions that
exchange data between kernel and user space in Linux. Programmers are not allowed to manipulate

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 5

user data by directly dereferencing user pointer except using copy functions because copy functions
provide safe data transfer by handling complicated situations such as page fault. Thus, any data
exchange between kernel and user space in Linux should involve invocations of the copy functions.

Since some memory data that resides in user space is accessible by both the kernel and the user
process, a race condition is likely to happen between kernel and user space. When the kernel reads
twice of some data from the same user memory location, a user thread could rewrite the data between
the two reads under a race condition, which introduces data inconsistency for the kernel use, and
therefore a double-fetch vulnerability happens. However, a double-fetch vulnerability is different
from a regular data race because the race condition is separated by the kernel and user space.
For a data race, the read and write operations exist in the same address space, therefore most of
the previous approaches detect data races by identifying both the read and write operations that
accessing the same memory location. However, things are different for a double-fetch vulnerability.
The kernel space only contains two reads while the write resides in the user space. The write in
the user space is usually potential, which means it does not essentially exist when we analyzing
the program, but it is likely to be created by a malicious user to race with the kernel. Besides, a
double-fetch vulnerability is also different from a regular data race in the way of accessing data. The
involvement of the kernel makes the data exchange relies on special schemes(e.g. copy functions
in Linux and IOCTL in Windows) instead of dereferencing the user pointer directly, which means
previous data race detection approaches are not applicable anymore. Moreover, as a semantic issue,
a double fetch is more complicated than a regular data race. A double-fetch vulnerability requires
a fetch (the check) phase and a use phase (where the fetched data is used). Although the check
can be located by matching the patterns of fetch operations, the use of the fetched data varies a
lot. Therefore, a double-fetch vulnerability is different from a regular data race, and we shall pay
attention to it due to its specialty, and severity.

3.2. Double-Fetch Vulnerabilities Cause the KHOBE Attack

The KHOBE (stands for Kernel HOok Bypassing Engine) attack or the ”argument-switch attack”,
was discovered by security research group Matousec on May 2010 [8]. It is essentially a typical
application of the double-fetch vulnerability targeting at bypassing the security software on
Windows, which caused an earthquake for the Windows desktops. Generally, the code running on
the host computer is scanned by the security software to find whether it is malware or the data is safe.
In the KHOBE attack, the malware passes innocuous code to be scanned by the security software,
then switch it to malicious code in place of the innocuous code right after the scan but before it is
used, so as to bypass the security check and perform malicious activities, such as install any variety
of malware or rootkit to take over the system.

More specifically, the KHOBE attack is effective against user mode and kernel mode hooks,
especially the SSDT(System Service Descriptor Table) hooks, which are the most common kernel
hooks in today’s security software. The SSDT is an internal dispatch table within Microsoft
Windows, which contains information about the services that are used by the operating system
for dispatching system calls. SSDTs belong to the kernel mode part of system call interface
implementation, which stores addresses of routines that user mode code can invoke indirectly
as a result of the special system call instruction [8]. Therefore, most modern security software
modifies addresses stored in the tables to point to its own routines, called hook functions or
hook handlers, which perform various checks to the calls from user mode applications before
invoking the system calls. The hook handler blocks a call if it endangers the system, otherwise, it
invokes the original system service with the same parameters it got from the user mode application.
The KHOBE attack works by calling the system service with parameters that will certainly pass the
checks of the services’ hook handlers. Then a faker thread tampers the contents of the parameters to
malicious values that would never pass the checks of the hook handler. If the tampering operation
occurs after the security checks are done but before the original service is called, the attack will
successfully bypass the security software.

As we illustrated previously, a typical double-fetch vulnerability works by changing the contents
of a user memory region referred to by a pointer. The pointer that passed to the kernel is

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

6 P. WANG ET AL.

unchangeable, while the content resides in the user space can be changed under race condition.
The KHOBE attack is more difficult, which concentrates on tampering the kernel handles. Even
though the value of the handle itself cannot be changed because it is copied to the kernel stack, the
actual meaning of the handle value can be changed. The handle type can be regarded as a special
type of pointer (handles refer to kernel objects like pointers do to memory regions), therefore the
attack on handle arguments has much in common with tampering pointers [8].

The KHOBE attack technique poses a significant security risk, and plenty of KHOBE
vulnerabilities were discovered from the prevalent security software at that time. One of the biggest
threats is that a KHOBE attack could be paired with a zero-day attack to bypasses host security
software and then do further damage. This general type of attack is fairly common with an initial
exploit loading additional malware to fully take over the system [30].

3.3. Methodology

Our study is conducted based on the thorough investigation of 91 real-world double-
fetch vulnerabilities (detailed information is available online from our dataset:
https://github.com/wpengfei/df dataset). We conducted the vulnerability collection work by
the following steps.

• These vulnerabilities are initially collected from related works, such as Bochspwn [7] and
Wilhelm’s work [9], which includes the cases they used for demonstration as well as the cases
they found and reported.

• We mainly take advantage of the CVE (Common Vulnerabilities and Exposures) † database to
find vulnerabilities by manually searching the keywords such as ”double fetch”,”kernel race
condition”,”TOCTOU”, etc.

• Then we manually filtered out the right vulnerabilities from the result and record the useful
information, which includes the year of report, vulnerable kernel versions, buggy files, causes,
and consequences, etc.

• We also tried to obtain the buggy source code and corresponding patches from the relevant
repositories and archives, which includes Linux repository on Github‡, Linux Kernel Mailing
List Archive§, Kernel Bugzilla¶, Redhat Bugzilla‖, etc.

• Then we further analyzed the buggy source code and the corresponding patches to conclude
specific patterns and strategies on prevention.

• For the cases that source code is unavailable, such as Windows, we analyzed the Microsoft
Security Bulletin∗∗ to get useful information.

After having finished the above work, we have constructed a local dataset of 91 real-world
double-fetch vulnerabilities, which covers a period of recent 12 years. Based on the investigation
of these vulnerabilities, we performed a further study, which includes the diversity of double-fetch
vulnerabilities, the categories of consequences, the exploitation techniques, and the strategies for
detection. We will discuss them in detail in the following sections.

4. DIVERSITY OF DOUBLE-FETCH VULNERABILITIES

Double-fetch vulnerabilities can take place in various situations. A double-fetch vulnerability is
kernel-independent, more likely to be caused by specific patterns, and even possibly be introduced
in the pre-processed binaries and in the peripheral data from I/O memory. In this section, we provide
investigation on eight particular double-fetch vulnerabilities to prove the diversity.

†http://cve.mitre.org/
‡https://github.com/torvalds/linux
§https://lkml.org/
¶https://bugzilla.kernel.org
‖https://bugzilla.redhat.com
∗∗https://technet.microsoft.com/en-us/library/security

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 7

1 void win32k_entry_point(…) {

2 ...

3 my_struct = (PMY_STRUCT) lParam;

4 if (my_struct ->lpData) {

5 cbCapture = sizeof(MY_STRUCT) + my_struct->cbData; //1st fetch

6 ...

7 my_allocation = UserAllocPoolWithQuota(cbCapture, TAG_SMS_CAPTURE))

8 if (my_allocation != NULL) {

9 RtlCopyMemory(my_allocation, my_struct->lpData, my_struct->cbData); //2nd fetch

10 }

11 }

12 ...

13 }

Figure 2. A Double-Fetch Vulnerability in File win32k.sys

4.1. Kernel-independent

The occurrences of double-fetch vulnerabilities are not specific to a certain kernel. Therefore, it is a
general problem that all the kernel developer should pay attention to.

4.1.1. Famous In Windows Kernel Term ”double fetch” was firstly introduced to describe a double-
fetch vulnerability (as is shown later) in Windows kernel. The first detection work on double-fetch
vulnerabilities was conducted by Bochspwn on Windows [7]. The first application of double-fetch
vulnerabilities in KHOBE attack was also conducted on Windows. Therefore, the Windows kernel
is of vital importance for the double-fetch vulnerability study.

Here is a double-fetch vulnerability (CVE-2008-2252) in win32k.sys from Windows kernel,
which had been patched in MS08-061[31]. In this case, an inadequate pool allocation and a later
memory pool overflow can be caused, which might lead to the execution of arbitrary code in
kernel mode. We can see from Figure 2, my_struct->cbData is fetched twice at line 5 and
line 9 respectively. However, the checking at line 8, which aims to guarantee the successful pool
allocation, is no longer effective anymore after the second fetch of my_struct->cbData (line
9), causing the potential inconsistency between the check (branch at line 8) and the use of the
fetched value (line 9). Therefore, a concurrently running thread may have the chance to switch
my_struct->cbData to a large value, which will result in pool overflow. Note here cbData is
accessed by dereferencing a pointer rather than explicit copy across address spaces, this is because
Windows kernel uses IOCTL method or shared memory object method to exchange data between
kernel and user space, which are manipulated in a similar way to the shared memory approach
that dereferences a pointer, however, they are internally different. Double-fetch vulnerabilities from
Window kernel also include CVE-2013-1332, CVE-2013-3888, CVE-2013-3907, etc.

4.1.2. Even Earlier in Linux Kernel Double-fetch vulnerabilities occur not only in Windows kernel
but also in Linux kernel, which was even earlier than when the double fetch was named. In Linux
kernel, exchanging data between the kernel and user space depends on the copy functions (e.g.
copy_from_user(), get_user()). Hence, the occurrence of a double-fetch vulnerability
involves multiple invocations of copy functions, which is a pattern easy to match for detection.

Figure 3 shows a double-fetch vulnerability [32] in Linux kernel-2.6.9, which was reported as
CVE-2005-2490. In file compat.c, when the user controlled content is copied to the kernel
by sendmsg(), the same user data is accessed twice without sanity check at the second
time. This can cause a kernel buffer overflow and therefore could lead to privilege escalation.
Function cmsghdr_from_user_compat_to_kern() works in two steps: it first examines
the parameters in the first loop (line 151) and copies the data in the second loop (line 184). However,
only the first fetch (line 152) of ucmlen is examined (line 159), while the second fetch (line 185) is
free from constraints, which may cause an overflow in the copy operation (line 194), or allow local
users to execute arbitrary code by modifying the message in a concurrently running thread.

Similar vulnerabilities also include CVE-2016-6136, CVE-2006-0039, CVE-2006-0457, etc.
Moreover, another double-fetch vulnerability in file commctrl.c of Linux kernel-4.5 (CVE-2016-
6480) even existed for over 10 years.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

8 P. WANG ET AL.

140 int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg, unsigned char

141 *stackbuf, int stackbuf_size)

142 {

143 struct compat_cmsghdr __user *ucmsg;

144 struct cmsghdr *kcmsg, *kcmsg_base;

...

149 kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;

150 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);

151 while(ucmsg != NULL) {

152 if(get_user(ucmlen, &ucmsg->cmsg_len))

153 return -EFAULT;

156 if(CMSG_COMPAT_ALIGN(ucmlen) <

157 CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))

158 return -EINVAL;

159 if((unsigned long)(((char __user *)ucmsg – (char __user*) kmsg-> msg_control)

160 + ucmlen) > kmsg->msg_controllen)

161 return -EINVAL;

...

166 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

167 }

...

183 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);

184 while(ucmsg != NULL) {

185 __get_user(ucmlen, &ucmsg->cmsg_len);

186 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +

187 CMSG_ALIGN(sizeof(struct cmsghdr)));

188 kcmsg->cmsg_len = tmp;

...

193 if(copy_from_user(CMSG_DATA(kcmsg),CMSG_COMPAT_DATA (ucmsg),

194 (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))

195 goto out_free_efault;

...

201 }

...

212 }

Figure 3. A Double-Fetch Vulnerability in File compat.c

4.1.3. Between Guest OS and Hypervisor In addition to occurring in a single system like Windows
and Linux, a double-fetch vulnerability can also occur across systems, which is between the
guest OS and hypervisor. One example is CVE-2016-9381, which was found in the shared
memory between the guest OS and hypervisor of Xen. A local administrative user on the guest
system can trigger this double-fetch vulnerability by changing certain data on the shared ring to
potentially execute arbitrary code with QEMU privileges. On systems that do not use a device
model stub domain (or other techniques for deprivileging qemu), the local administrative user on
the guest domain can obtain host system privileges. Unfortunately, detailed information about this
vulnerability was not disclosed. A similar vulnerability (CVE-2015-8550) was found in the backend
driver of Xen (we will discuss it in the next subsection).

4.2. Patterns Play A Significant Role

A double-fetch vulnerability usually matches some patterns that are specific to context conditions.

4.2.1. Size Checking. In Linux, devices are represented as files, which can be accessed from user
space in exactly the same way as other types of files. A device driver is linked to its corresponding
device file in the kernel space, and it exchanges data between the device file and user process through
the copy functions. Most of the time, copying data between user and kernel space is straightforward
and is done via a single invocation of the copy function. However, things get complicated when
the data has a variable type or a variable length. Usually, such data can be separated into the data’s
header which is followed by the data’s body. In the following, we consider such data to be messages,
which are most common in drivers. For a variable length message, the header is used to identify the
size of the complete message. It is copied to the kernel first to get the message size, check for
validity, and allocate a local buffer of the necessary size. Then a second fetch follows to copy the
whole message, which also includes the header, into the allocated buffer. In this situation, a double
fetch is inevitable. If the size is retrieved from the header of the second fetch and used, the kernel

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 9

131 static long ec_device_ioctl_xcmd(struct cros_ec_dev *ec, void __user *arg){

...

134 struct cros_ec_command u_cmd;

135 struct cros_ec_command *s_cmd;

136

137 if (copy_from_user(&u_cmd, arg, sizeof(u_cmd)))

138 return -EFAULT;

139

140 s_cmd = kmalloc(sizeof(*s_cmd) + max(u_cmd.outsize, u_cmd.insize),

GFP_KERNEL);

...

145 if (copy_from_user(s_cmd, arg, sizeof(*s_cmd) + u_cmd.outsize)) {

146 ret = -EFAULT;

147 goto exit;

148 }

...

151 ret = cros_ec_cmd_xfer(ec->ec_dev, s_cmd);

...

161 }

187 static int cros_ec_cmd_xfer_i2c(struct cros_ec_device *ec_dev,

188 struct cros_ec_command *msg){

...

209 packet_len = msg->insize + 3;

210 in_buf = kzalloc(packet_len, GFP_KERNEL);

...

220 packet_len = msg->outsize + 4;

221 out_buf = kzalloc(packet_len, GFP_KERNEL);

...

229 out_buf[2] = msg->outsize;

...

231 /* copy message payload and compute checksum */

232 sum = out_buf[0] + out_buf[1] + out_buf[2];

233 for (i = 0; i < msg->outsize; i++) {

234 out_buf[3 + i] = msg->data[i];

235 sum += out_buf[3 + i];

236 }

237 out_buf[3 + msg->outsize] = sum;

...

286 }

Figure 4. A Double-Fetch Vulnerability in File cros ec dev.c

becomes vulnerable as a malicious user could have changed the size element of the header between
the two fetches. If for example, the size is used to control buffer access, this situation turns into a
vulnerability [33].

Figure 4 shows a double-fetch vulnerability (CVE-2016-6156) in file cros_ec_dev.c from
the driver of Linux kernel-4.5 [34], which is also a case that involves variable length message.
Function ec_device_ioctl_xcmd() fetches data from user space pointed by pointer arg via
copy_from_user() twice in line 137 and line 145 respectively. The first fetched value (u_cmd)
is used to calculate a buffer size and to allocate a buffer of the calculated size (line 140), while
the second copy fetches the whole message to the buffer (s_cmd) based on the calculated size.
Therefore, the second fetch is based on outsize and insize from the first fetch. However, after
the second fetch, the whole message is passed as a parameter to function cros_ec_cmd_xfer
(line 151), in which the outsize and insize are used again (line 209, 220, 229, 233, 237). Since
outsize and insize which now come from the second fetch are potentially inconsistent with
the ones from the first fetch, and outsize also controls a loop (line 233), therefore, a double-fetch
vulnerability occurs because malicious change of outsize or insize from concurrently running
thread under race condition would cause kernel out-of-boundary access. Similar vulnerabilities also
include CVE-2015-1420, CVE-2016-5728, CVE-2016-6130, CVE-2016-6136, CVE-2016-6480.

4.2.2. Shallow Copy As we illustrated previously, the data exchanged between the kernel
(especially the drivers) and user space is usually in the form of a message. A message not only
has variable length and type but also has variable structure members, in which pointers are common
to see. Exchanging of messages that have pointer members in the structure would lead to a situation
we call as shallow copy, which could also cause double-fetch vulnerabilities. A shallow copy
happens when a data struct (the first buffer) in the user space is copied to the kernel space and
the struct contains a pointer to another region in user space (the second buffer). The copy function
only copies the first buffer (a shallow copy) and the second buffer has to be copied explicitly by
a second invocation of the copy function (to perform a deep copy). It is common to see that user
processes copy data from user space into kernel space, and copy the data back after processing it.
Such data is usually in a second buffer in user space (a pointer member of a message) and pointed
to by a pointer in the first buffer (a pointer to the message). Deep copies of such data will cause
multiple invocations of copy functions, which causes a double fetch which is very likely to turn into
a double-fetch vulnerability.

In Linux, performing a deep copy on a message that has a second buffer can cause a double-
fetch vulnerability. Figure 5 shows such a case (CVE-2016-6130) in file sclp_ctl.c from
Linux kernel-4.5 [35]. Function sclp_ctl_ioctl_sccb() performs a shallow copy of a data
structure from user space pointed to by user_area into ctl_sccb (line 61). To do a deep
copy it has to copy another data structure (the second buffer) from user space pointed to by
ctl_sccb.sccb (line 74). However, the size of the data structure is variable, in order to copy the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

10 P. WANG ET AL.

55 static int sclp_ctl_ioctl_sccb(void __user *user_area)

56 {

57 struct sclp_ctl_sccb ctl_sccb;

58 struct sccb_header *sccb;

...

61 if (copy_from_user(&ctl_sccb, user_area, sizeof(ctl_sccb)))

62 return -EFAULT;

...

65 sccb = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);

66 if (!sccb)

67 return -ENOMEM;

68 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb), sizeof(*sccb))) {

69 rc = -EFAULT;

70 goto out_free;

71 }

...

74 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb), sccb->length)) {

75 rc = -EFAULT;

76 goto out_free;

77 }

...

78 if (copy_to_user(u64_to_uptr(ctl_sccb.sccb), sccb, sccb->length))

79 rc = -EFAULT;

...

86 }

Figure 5. A Double-Fetch Vulnerability in File sclp ctl.c

571 static long ioctl_file_dedupe_range(struct file *file, void __user *arg)

572 {

573 struct file_dedupe_range __user *argp = arg;

574 struct file_dedupe_range *same = NULL;

...

579 if (get_user(count, &argp->dest_count)) {

580 ret = -EFAULT;

581 goto out;

582 }

583

584 size = offsetof(struct file_dedupe_range __user, info[count]);

585

586 same = memdup_user(argp, size);

...

593 ret = vfs_dedupe_file_range(file, same);

594 if (ret)

595 goto out;

...

604 }

1569 int vfs_dedupe_file_range(struct file *file,

struct file_dedupe_range *same){

...

1578 u16 count = same->dest_count;

...

1606 for (i = 0; i < count; i++) {

1607 same->info[i].bytes_deduped = 0ULL;

1608 same->info[i].status = FILE_DEDUPE_RANGE_SAME;

1609 }

1610

1611 for (i = 0, info = same->info; i < count; i++, info++) {

...

1656 }

1669 }

Figure 6. A Double-Fetch Vulnerability in File fs/ioctl.c

data, it first fetches the header of the data structure into the newly created kernel space pointed to
by sccb (line 68) to get the data length in sccb->length. Then, based on sccb->length, it
copies the whole content with a second fetch at line 74. Finally, at line 78, the data is copied back to
the user space. While it looks like both invocations of the copy functions at lines 74 and 78 use the
same length sccb->length, line 78 actually uses the value from the second fetch (line 74) while
line 74 uses the value from the first fetch (line 68). Since a malicious user thread may have changed
value sccb->length under race condition between the two fetches, a kernel information leakage
could be caused at line 78 when copying back data to user space with a larger size. Therefore, this
is a double-fetch vulnerability.

4.2.3. Inter-Procedure. In addition to the above situations that the two fetches of a double-fetch
vulnerability take place in the same procedure, a double-fetch vulnerability can also be inter-
procedure, which is more complicated and difficult to detect. Inter-procedure situations will cause
false negatives for static-based approaches that match the two fetches to detect double-fetch
vulnerabilities. Besides, the fetched value is passed as parameters to other procedures, which will
cause difficulty in identifying how the value is used and how the problem is caused.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 11

...

319 int saa7164_bus_get(struct saa7164_dev *dev, struct tmComResInfo* msg,

320 void *buf, int peekonly){

...

384 memcpy_fromio(&msg_tmp, bus->m_pdwGetRing + curr_grp, space_rem);

385 memcpy_fromio((u8 *)&msg_tmp + space_rem, bus->m_pdwGetRing,

bytes_to_read - space_rem);

...

405 if ((msg_tmp.id != msg->id) || (msg_tmp.command != msg->command) ||

(msg_tmp.controlselector != msg->controlselector) ||

(msg_tmp.seqno != msg->seqno) || (msg_tmp.size != msg->size)) {

/* Check if the command/response matches what is expected */

...

413 goto out;

414 }

...

446 memcpy_fromio(msg, bus->m_pdwGetRing + curr_grp, space_rem);

447 memcpy_fromio((u8 *)msg + space_rem, bus->m_pdwGetRing,

448 sizeof(*msg) - space_rem);

449 if (buf)

450 memcpy_fromio(buf, bus->m_pdwGetRing + sizeof(*msg) -

451 space_rem, buf_size);

... }

...

161 ret = saa7164_bus_get(dev, &tRsp, &tmp, 0);

...

/* tRsp.seqno is accessed by dev->cmds[tRsp.seqno]

in the following function call, which could cause array over-read.*/

173 saa7164_cmd_free_seqno(dev, tRsp.seqno);

...

412 while (loop) {

...

529 if ((presponse_t->id != pcommand_t->id) ||

530 (presponse_t->command != pcommand_t->command) ||

531 (presponse_t->controlselector !=

532 pcommand_t->controlselector) ||

533 (((resp_dsize - data_recd) != presponse_t->size) &&

534 !(presponse_t->flags & PVC_CMDFLAG_CONTINUE)) ||

535 ((resp_dsize - data_recd) < presponse_t->size)) {

...

549 }

552 ret = saa7164_bus_get(dev, presponse_t, buf + data_recd, 0);

...

558 data_recd = presponse_t->size + data_recd;

...

570 }

(b)(a)

Figure 7. A Double-Fetch Vulnerability from Device I/O Memory

Figure 6 shows a double-fetch vulnerability (CVE-2016-6516) in file fs/ioctl.c
from Linux kernel-4.7 [36], which is also a inter-procedure case. In function
ioctl_file_dedupe_range(), user data arge->dest_count is fetched for the
first time at line 579, and used to calculate size at line 584. Instead of a second data fetch,
it duplicates a user memory region (line 586) of size. Then the duplicated memory region is
passed as a parameter to another function vfs_dedupe_file_range(). In this function,
dest_count is fetched again (line 1578) from the duplicated memory region, and used at line
1606 and line 1611 respectively, both of which are used as counters to control the loops. Since a
malicious user might have changed the user data dest_count under race condition between the
first fetch and the memory duplication, the counter retrieved from the duplicated memory might be
larger that supposed to, and consequences such as heap-based buffer overflow or possibly privilege
escalation would be caused by this double-fetch vulnerability.

4.3. Peripheral Devices Are Not Safe

A double-fetch vulnerability occurs not only in the memory between the kernel and user space,
but also in the I/O memory between the kernel and peripheral device. As is known to all, every
peripheral device is controlled via the writing and reading of its registers and device memory by
the kernel, and when drivers use the memory-mapped I/O method [37, 38, 39, 40] to establish the
I/O with the devices, reading from and writing to the I/O memory works in exactly the same way
as accessing the regular memory in the computer. If the data from the same I/O memory address
changes between two reads and the kernel then uses it as the same data without noticing, a double
fetch problem occurs. In addition, since drivers are essentially unable to fully validate the attached
devices, a compromised device can be controlled to perform malicious data change with the correct
timing required to trigger this double-fetch vulnerability.

Figure 7 (a) is a code snippet from /drivers/media/pci/saa7164/saa7164-bus.c
in linux-4.10.1, showing such a double-fetch vulnerability (CVE-2017-8813). Function
saa7164_bus_get() uses line 384 and 385 to fetch I/O memory data from
bus->m_pdwGetRing to local buffer msg_tmp, then it uses msg_tmp to do a series of
checks with the desired data at line 405, including ->size and ->seqno. After the checks, a
second fetch (line 446 and 447) copies the data from bus->m_pdwGetRing to msg for later
use. This double fetch here is vulnerable because the secondly fetched data in msg cannot be
guaranteed to satisfy the conditions at line 405. Once the ->size or ->seqno of the secondly
fetched message changes, using that message is likely to cause memory access related problems.

Figure 7 (b) shows how this function is called. At line 552, function saa7164_bus_get() is
called in a loop to receive data. The fetched message is stored in presponse_t, and ->size field
is used to calculate the position pointer for buf. However, the developer has aware of this problem

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

12 P. WANG ET AL.

...

669 #define hlist_entry_safe(ptr, type, member) \

670 (ptr) ? hlist_entry(ptr, type, member) : NULL

...

Figure 8. A Double-Fetch Vulnerability in a Macro

and added a validation check (from line 529 to 535) to prevent potential invalid message. Therefore,
this situation is safe. Another situation occurs at line 161, the fetched message is stored in tRsp
and is immediately passed to function saa7164_cmd_free_seqno() (line 173), within which
->seqno field of the message is used to access an array (dev->cmd[tRsp.seqno]). But this
time, the message is used without an additional validation, if ->seqno field of the message is
changed to a very large value before the second fetch, an array over-access error could be caused.
Therefore, causing a double-fetch vulnerability.

4.4. Beyound Ordinary Source Code

4.4.1. Macro Substitution In addition to occurring in the ordinary source code, a double-fetch
vulnerability could also occur at a lower level, such as in the macro before pre-processing. Macros
are different from the ordinary source code because macros expand (or substitute) during pre-
processing. In other words, there could be multiple occurrences of macro substitutions in the source
code, sometimes even the programmer cannot figure out where exactly a macro expands. For the
ordinary source code, we could be aware of the double-fetch problem when copying the data from
user space to kernel space because a double-fetch problem happens exactly where the code is.
However, things are different for a macro. Most of the time, it is difficult for a programmer to take
into consideration of all the substitutions when writing a macro, let alone the substitution contexts.
Therefore, for some substitutions, a double-fetch situation could lead to a vulnerability, while for
others, it will not. In short, it is hard for a macro to predict the substitution contexts, thus unexpected
consequences can be caused, such as a double-fetch vulnerability.

Figure 8 shows a double-fetch vulnerability in the macro [41], which was in file
include/linux/list.h of Linux kernel-3.9-rc1 and had been patched in rc-3. This macro
fetches the pointer ptr twice, the first time to test for NULL and the second time to compute
the offset back to the enclosing structure (line 670). However, due to the potential pointer change
between the two fetches, a null-pointer crash might be caused. This situation makes a double-fetch
vulnerability particularly difficult to find because most of the approaches applied to source code
only after expanding the macros, such as LLVM works on the AST (Abstract Syntax Tree). Very
few approaches support the analysis of macro before expansion.

4.4.2. Compiler Optimization Finally, a double-fetch vulnerability can also be introduced into
the binaries during compilation, which is even harder to notice than occurring in the macros.
CVE-2015-8550 [42] is such a double-fetch vulnerability introduced by compiler optimization of
Xen Hypervisor, which caused problems in the communication between the frontend driver and
backend driver components. What makes this case particularly interesting is that this double-fetch
vulnerability didn’t show up when inspecting the source code, but it could clearly be seen in the
compiled binary.

As is shown in Figure 9, the left part is the source code of a switch statement in xen-pciback (the
backend component used for para-virtualized PCI devices), within which no sign of any double-
fetch situation is found. While the right part of Figure 9 is the assembling of this switch statement,
and we can observe a double-fetch situation occurs. During the compilation, the compiler generates
a jump table to dynamically jump to the correct branch in the switch statement. The r13 register
points to a shared memory region and r13+0x4 corresponds to the value used in the switch
statement to select a branch. The value of r13+0x4 is used to compare with the upper limit 0x5
(line 1). If it is higher than 0x5, the default branch (line 2) is used. In line 4, r13+0x4 is fetched
a second time and used as an index of the jump table at line 5. As a result, if the data stored in

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 13

1 cmp DWORD PTR [r13 + 0x4], 0x5

2 mov DWORD PTR [rbp - 0x4c], eax

3 ja 0x3358 < xen_pcibk_do_op + 952 >

4 mov eax, DWORD PTR [r13 + 0x4]

5 jmp QWORD PTR [rax*8 + off_77D0]

switch(op->cmd){

case XEN_PCI_OP_conf_read:

op->err = xen_pcibk_config_read(dev,

op->offset, op->size, &op->value);

break;

case XEN_PCI_OP_conf_write:

//...

case XEN_PCI_OP_enable_msi:

//...

case XEN_PCI_OP_disable_msi:

//...

default:

op->err = XEN_PCI_ERR_not_implemented;

}

Figure 9. A Double-Fetch Vulnerability in The Compiled Binary

r13+0x4 is modified between the two fetches, the final jump (line 5) destination can be affected
and arbitrary code can potentially be executed, which possibly lead to privilege escalation.

This double-fetch vulnerability occurs because if the pointers to the shared memory regions are
not labeled as volatile during compiling, the compiler is allowed to turn a single memory access
(in the code to be compiled) into multiple accesses at the binary level since it assumes that the
memory will not be changed by another thread of execution. Note that the user data here looks like
is fetched by dereferencing a pointer without using the copy function, however, this is a special case
that has the same result. Although in Linux, programmers are not allowed to fetch user space data by
dereferencing a pointer without using a copy function, internally, copy functions are implemented
by assembling and data is actually transferred by dereferencing user pointers. Therefore, in the case
of Figure 9, the assembling is more like how it works within a copy function. In other words, this
special case is an assembling level double-fetch vulnerability, which is lower than ordinary ones.

This compilation introduced double-fetch vulnerability had been patched already, and even
if the real world impact is probably quite low, this case enriches the diversity of double-fetch
vulnerabilities.

5. DISCUSSION

Double-fetch vulnerabilities can cause serious consequences that are exploitable by the attackers.
Existing works have proved the feasibility of exploiting double-fetch vulnerabilities. In this
section, we categorize the consequences caused by double-fetch vulnerabilities, summarize practical
approach on exploiting double-fetch vulnerabilities, and provide viable strategies on detection.

5.1. Double-fetch Vulnerabilities Cause Serious Consequences

According to our investigation of 91 double-fetch vulnerabilities, we categorized the consequences
that are usually caused by the double-fetch vulnerabilities into the following four categories. These
consequences are declared by either the CVE entries or the relevant reports. The percentage of
involvement for each category is shown in Figure 10.

• Gain privileges. In most of the cases, gaining privilege is the ultimate goal for an exploitation
work, which means taking full control of the whole system, such as CVE-2008-2252,
CVE-2013-1248, etc. According to our investigation, there are totally 42 double-fetch
vulnerabilities involve with this consequence, accounting for 46.2%.

• Information leakage. A double-fetch vulnerability can also make the user process illegally
access additional kernel memory, and the user process could, therefore, obtain sensitive
information from the kernel memory, leading to information leakage, such as CVE-2005-
0457, CVE-2016-6130 etc. We found 35 such occurrences, accounting for 39.5%.

• Bypassing. Bypassing is another consequence that can be caused by a double-fetch
vulnerability. The famous KHOBE attack [8] is a scenario of using the double-fetch
vulnerability to bypass the security software. In addition, an attacking can also bypass the

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

14 P. WANG ET AL.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Gain privileges Information

leakage

Bypassing Denial of

service

Percentage

Percentage

Figure 10. Comparison of Concequences Caused by Double-fetch Vulnerabilities

auditing system (CVE-2016-6236) or other system protection schemes. We observed 39 such
occurrences (including the KHOBE attacks), accounting for 42.9%.

• Denial of service. Denial of service is a category of consequences that a software application
or operating system stops functioning properly and exits, which may appear to hang until a
crash reporting service reports the crash and any details relating to it [43]. A double-fetch
vulnerability usually causes a denial of service in two ways: buffer over-read (or out-of-
bounds array access) and buffer overflow. When the double-fetched value in a double-fetch
vulnerability is a variable (e.g. indicating an array length of 128) that controls the accesses to
an array of memory locations (usually in the form of a loop), the variable could be switched
to a larger value (e.g. 256) right after the first fetch to check but before second fetch to use.
Therefore, when the malicious value is used to control the memory access, if the access is
a read, then buffer over-read is caused (e.g. CVE-2016-6156), if the access is a write, then
buffer overflow is caused (e.g. CVE-2016-6516). Both of them can cause a denial of service.
We found 10 occurrences of this category, accounting for 11.0%.

In addition, a double-fetch vulnerability could also cause combinatorial consequences. In our
investigation, we found 30 cases (from CVE-2013-1248 to CVE-2013-1277) that can cause both
information leakage and gain privileges, accounting for 33.0%. Three cases (CVE-2006-0457, CVE-
2016-5728, and CVE-2015-1420) could cause information leakage and denial of service at the same
time, accounting for 3.3%. And two cases (CVE-2016-6516 and CVE-2015-8550) could cause a
denial of service and gain privileges, accounting for 2.2%.

5.2. Exploiting Double-fetch Vulnerabilities Is Indeed Viable

In 2012, Yang et al. [12] carried out a preliminary study on concurrency attacks based on the
exploitation of Time-Of-Check to Time-Of-Use errors in concurrency programs. They proved
the feasibility of such concurrency attack by real-world cases. They also pointed out that the
exploitability of such a concurrency error depends on the duration of the timing window within
which the error occur, and attackers can increase this window through carefully crafted inputs.
These exploitable concurrency errors they studied are very similar to double-fetch vulnerabilities
except they are in user applications while a double-fetch vulnerability involves the kernel.

In contrast to typical race condition errors where the program itself is the one creating the threads
and running them, a double-fetch vulnerability exploitation requires the attacker himself to create
the racing threads [44]. Jurczyk and Coldwind not only gave a systematic study of double-fetch
vulnerabilities in Windows but also provided practical exploitation techniques. Tricks like using
page boundary, disabling page cacheability, and TLB (Translation Lookaside Buffers) flushing
could significantly expand the time window between the two kernel reads, so as to increase the
success rate of changing the data [7].

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 15

Page

boundary

Exploit process

create_thread()

data

data while(1){

write(address, new_value)

}

Target program

Prepare user data

Address

Crafted

user data

Finish

Racing threadTrigger thread

join_thread()

Figure 11. Illustration of Exploitating a Double-fetch Vulnerability

After the pilot work of Jurczyk and Coldwind, double-fetch vulnerabilities have raised awareness
and plenty of works have been conducted on this, especially on the exploitation. Hammou [44]
exploited a double-fetch vulnerability in a Windows driver, and escalated privileges on the system.
The vulnerable kernel-mode driver (rcdriver) registers an IOCTL handler (RcIoCtl) for data copy
between kernel and user space. The driver firstly accesses the IRP SystemBuffer to get the address
(pointed by UserAddress) to where the user input resides, then performs ProbeForWrite
on it to get the data. However, a double-fetch vulnerability happens because UserAddress is
fetched twice from user mode memory. The exploitation works by supplying a valid user-mode
address to ProbeForWrite and then quickly changes the UserAddress field to a kernel-mode
address, so that to write 4 bytes data to any kernel memory location. The privilege escalates when
the TokenObject->Privileges.Enabled field of an attacker’s process is set to 0xffffffff in
this way.

In addition to the above successful exploitations, there are some other attempts. Maiki [45]
provided strategies on exploiting CVE-2005-2490. He pointed out that placing the crafted user data
across page boundary could increase the time window. This is because in this way, it is more likely
to trigger a page fault when accessing the data from two pages (or even more pages). A page fault
could suspend the current thread that is fetching the user data, and wait for the desired page to be
swapped in, while a malicious thread gets the chance to be scheduled (on a single-core machine) or
is still running (on a multi-core machine) and switches the data before the fetching thread backs to
work. Finally, the use of the changed data could cause a stack overflow and crash the kernel. Bauer
[46] gave an exploitation PoC (Proof of Concept) of CVE-2016-6516 in a similar way, which could
control which cache the overflow happens on and overwrites the fetched data with zeros.

Finally, as is shown in Figure 11, we summarized a common routine of exploiting a double-fetch
vulnerability. The exploitation works by injecting two threads into the application, one that invokes
the target program (trigger thread) and a second one that keeps switching the fetched data (racing
thread). Threads running in the same address space prevents potential segmentation fault when
rewriting user data. A race condition is triggered when the crafted user data is accessed concurrently
by both the trigger thread to invoke the target program and the racing thread to rewrite the data. In
order to increase the successful rate of changing data, tricks like placing data across page boundary,
disabling page cacheability, and flushing TLB could be adopted to expand the time window between
the two kernel reads.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

16 P. WANG ET AL.

So far, to the best of our knowledge, there havent been any known real attacks based on the
double-fetch vulnerabilities except the demos and PoCs on exploiting the already known ones
proposed by the researchers. However, known vulnerabilities, especially the one-day vulnerabilities,
are also dangerous since many systems do not apply the patches immediately. For example, CVE-
2015-1426 is a double-fetch vulnerability in the Linux kernel. It was found in 2015 and then patched
by the maintainer in the supported versions. However, in 2016, Wang et al [33] found it again in
the latest Android kernel. This is because an Android kernel uses a long-time-support version of
Linux as its kernel, which is relatively old. The patch for this vulnerability hadnt yet been pushed
to the Android side from the Linux side, and thus caused a vulnerable Android kernel. Therefore,
an attacker has two ways to find and exploit a system in terms of such vulnerability. One is to
detect it from the systems by original methods, which is time-consuming but can discover zero-day
vulnerabilities. Another way is to exploit known (one-day) vulnerabilities on the systems that havent
applied the patch. We have added this part to the paper.

5.3. Implications on Detection

Detection of this vulnerability is one of the most important parts in the study of double-fetch
vulnerabilities. In this section, we provide two viable approaches: dynamic memory access tracing
and static pattern matching.

(1)Dynamic memory access tracing. A dynamic approach is easier to follow and construct, and
both Bochspwn [7] and Wilhelm [9] adopted this one to detect double-fetch vulnerabilities. Based
on a set of criteria that ”at least two memory reads from the same virtual address”, ”both read
operations take place within a short time frame (same semantic context)”, ”the code instantiating
the reads must execute in kernel mode (ring-0)”, ”the virtual address subject to multiple reads must
reside in memory writable by user threads (ring-3)”, a dynamic approach by memory access tracing
of the target OS running in a simulator (e.g. Bochs††) is proved effective and discovered a series of
double-fetch vulnerabilities.

However, a dynamic approach is limited in the coverage it can achieve, and it also cannot be
applied to code that needs corresponding hardware to be executed, for example, it cannot analyze
all of the drivers without having the corresponding hardware or a simulation of it to run the test.
Failing to do so will cause false negatives when using a dynamic approach to detect double-fetch
vulnerabilities. For example, Bochspwn also tried to detect double-fetch vulnerabilities in Linux
kernel of version 3.5 [47] but found nothing, while three vulnerabilities that were founded later
actually existed in that version (CVE-2016-6136, CVE-2016-6480, CVE-2015-1420). The was
because they were in the driver while Bochspwn failed to cover this part. Besides, runtime overhead
is another problem, e.g. the simulator of Bochspwn needs 15 hours to boot up. Even though the
dynamic approach is not perfect, sometimes it is the only choice when the kernel source code is
unavailable to conduct a static analysis, such as the analysis of Windows kernel.

(2)Static pattern matching. A static approach is a good choice when the source code of the
target kernel is available. Since a double-fetch vulnerability has obvious patterns that ”occurs in
the kernel source code”, ”two kernel reads of the user data via the same user pointer”, ”no kernel
write to the user data between the two reads”, a static pattern matching is effective and portable.
Furthermore, Linux fetches data from user space by invocations of copy functions, which is also a
feature that suits pattern matching. Besides, static-based approaches achieve better code coverage,
and some of them support full path exploration. For example, Coccinelle [48] is a program matching
and transformation engine that is used for finding and fixing bugs in systems code. It is path-
sensitive but insensitive to newlines, spaces, comments, etc. Moreover, the matching of Coccinelle
is applied without expanding copy functions that are defined as macros such as get_user()
or __get_user(), which facilitates the identification of the kernel fetches by matching copy
functions [33]. Besides, static approaches can also combine with a manual review of the source

††http://bochs.sourceforge.net/

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 17

code, which could give a better understanding of how the vulnerability occurs or filter out the false
reports.

However, one big shortcoming of the static approach is the false positives due to the lack of the
overall knowledge of the runtime environment. In order to perform a precise analysis, the following
problems should be addressed.

1. Pointer aliasing. Two fetches are not necessarily using the same pointer to fetch the data, but
actually read from the same memory location. Neglecting this would lead to false negatives.

2. Pointer changing. Even using the same pointer, the pointer might be changed between the
two fetches by adding an offset or assigned by another value, which results in pointing to a
different memory location, therefore different data is fetched. Neglecting this could lead to
false positives.

3. Overlapped two fetches. Two fetches might use two different pointers to read two different
user data, but the two fetched data overlaps, which results in a double-fetched data section.
For example, a message header vs the whole message. Neglecting this situation would cause
false negatives.

4. Inter-procedure analysis. Two fetches can also respectively reside in two different
procedures where one invokes another, and the use of the fetched data can even occur in a
third procedure. In this situation, a simple pattern matching might be infeasible, and a call
graph analysis should be helpful. Neglecting this situation might result in false negatives.

5. Use of the double-fetched data. The above-mentioned pattern only matches the operations
where the user data is double-fetched. However, for a double-fetch vulnerability, the most
important part is how the double-fetch data is used. If the double-fetched data is never used,
then it will not cause a vulnerability.

In addition, hardware-based methods are proved to be effective in the detection of concurrency
bugs. For example, Transactional Memory (TM) was once used to detect and prevent atomicity-
violation concurrency bugs [49]. TM enables programmers to declare regions of code atomic
without specifying a lock and has the potential to avoid these bugs. Studies [50, 51] found that TM
is measurably easier than fine-grained locks, and results in fewer bugs and less development time, or
better performance. However, these attempts were preliminary. They focused on using just a single
mechanism (locks or transactions), while real-world large programs (such as kernel programs) use
many different synchronization mechanisms, such as condition variables and I/O. Therefore, the
TM-based approaches are not practical to detect double-fetch vulnerabilities in the kernel.

There are also proposals for race detectors with hardware assists. Some [52, 53, 54, 55] detect
races by tagging the state in the caches as it is being accessed, and then piggybacking the tags
on cache coherence protocol messages between processors so that they can be compared. The
hardware can easily detect an address and an instruction involved in a race on the fly. Then, roll
back and re-execute the code section to reveal the other instructions involved in the same race.
SigRace [56] relies on automatically encoding signatures in the addresses of the data the processor
is accessing. Then the signatures are automatically passed to a hardware module that intersects
them with those of other processors. If the intersection is not null, a data race may have occurred.
Another work based on hardware is DataCollider [57], which is a lightweight tool that detects data
races in kernel modules. It randomly samples a small percentage of memory accesses as candidates
for data-race detection, and it uses breakpoint facilities already supported by hardware architectures
to lower runtime overhead. However, since these proposals detect races by identifying multiple
threads accessing the same shared data, while the race condition in a double-fetch vulnerability is
crafted by the malicious user when triggering the vulnerability, which does not necessarily exist
when examining the program. Therefore these race detectors are not workable for the detection
of double-fetch vulnerabilities. Hardware-assisted detection of double-fetch vulnerabilities remains
immature.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

18 P. WANG ET AL.

5.4. Strategies on Prevention

Based on the analysis of the real-world double-fetch vulnerability patches we collected, we
summarized the following practical suggestions on preventing double-fetch vulnerabilities. We
believe these suggestions are helpful for the OS developers to prevent such vulnerabilities.

1. Don’t copy the header twice. For the ”size checking” situation, a double-fetch vulnerability
can be completely avoided if the second fetch only copies the message body and not the
complete message which copies the header a second time.This approach is useful and was
adopted by the patch of CVE-2015-1420.

2. Use the same value. A double fetch turns into a double-fetch vulnerability when the kernel
uses the data both from the first fetch and the second fetch because a (malicious) user can
change the data between the two fetches. If the developers only use the data from one
of the fetches, problems are avoided. However, this approach causes the so-called ”benign
double fetch” situations [33], in which the double-fetched data is not double-used and thus
not causing a vulnerability for now. Nevertheless, it can easily turn into a double-fetch
vulnerability when the code is updated by a maintainer who reused the double-fetched data
without pay special attention to this situation, which is a major disadvantage of this approach.
CVE-2016-5728 is a vulnerability resulted from the update of a benign double fetch.

3. Overwrite data. There are also situations that some data needs to be fetched and used twice,
for example, the complete message is passed to a different function for processing. One way
to resolve the situation is to overwrite the data from the second fetch with the data that has
been fetched first, so as to stick to the data from the first fetch. This approach is widely seen
adopted in FreeBSD code [33], such as in sys/dev/aacraid/aacraid.c.

4. Compare data. Another way to resolve a double-fetch vulnerability is to compare the data
from the first fetch to the data of the second fetch. If the data is not the same, the operation can
be safely aborted. This approach is widely used to patch the double-fetch vulnerabilities (e.g.
(CVE-2016-6130, CVE-2016-6156, CVE-2016-6480) since it does not need to change very
much of the source code. Besides, it has the advantages of both allowing detecting attacks by
malicious users and protecting from situations in which the data is changed without malicious
intent (e.g., by some bug in user space code) [33].

5. Labeling Volatile For the special case that a double-fetch vulnerability introduced during
the compiler optimization (CVE-2015-8550), we could simply prevent it by labeling the
volatile option. In this way, the compiler would not turn a single memory access into multiple
accesses at the binary level.

So far there hasn’t been any formal framework (to the best of our knowledge) to prevent or fix
such double-fetch vulnerabilities except one attempt. Wang et al [33] proposed an automatic tool to
patch the discovered double-fetch vulnerabilities that belong to the size-checking category with the
compare data approach.

A double-fetch vulnerability is very similar to the atomicity-violation bugs in concurrency
programs. Both of them share the same principle that two accesses to the supposedly same data are
interleaved by a remote thread access that changes the data under race condition. For such race-based
atomicity violations, a general lesson is to keep the atomicity of accesses to the supposedly same
data, so as to prevent the potential modification to the shared data. Since such atomicity violations
usually occur between threads within the same process, synchronization primitives, such as locks,
are helpful in keeping the atomicity. Even though synchronization primitives are less helpful for
the prevention of double-fetch vulnerabilities since it introduces severe overhead in the kernel, we
provide above practical solutions that are in accordance with the double-fetch characteristics.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 19

6. CONCLUSIONS

Double-fetch vulnerabilities can cause serious consequences in the kernel. This work provides
the first (to the best of our knowledge) comprehensive study on double-fetch vulnerabilities. Our
study is based on the investigation of 91 real-world double-fetch vulnerabilities collected from
the CVE database and other relevant reports and patches, which covers a period of recent 12
years. We constructed a local dataset and made it publicly available for further study. Our work
reveals some interesting findings on the double-fetch vulnerabilities, which include the various
occurrences across different kernels and system levels, the involvement of specific patterns (e.g.
”size checking” and ”shallow copy”), and occurrence of different system layer (e.g. preprocessed
code, I/O memory .etc). We also categorized four popular consequences that are usually caused by
double-fetch vulnerabilities, provided viable exploitation techniques from existing works, discussed
guidances to detection, and provided useful strategies to prevent double-fetch vulnerabilities.

ACKNOWLEDGEMENTS

The authors would like to sincerely thank all the reviewers for your time and expertise on this paper.
Your insightful comments help us improve this work. This work is partially supported by the National
High-tech R&D Program of China (863 Program) under Grants 2015AA01A301, by the program
for New Century Excellent Talents in University, by the National Science Foundation (NSF) China
61272142, 61402492, 61402486, 61379146, 61272483, 61472437, and by the laboratory pre-research fund
(9140C810106150C81001).

REFERENCES

1. Wu Z, Lu K, Wang X, Zhou X, Chen C. Detecting harmful data races through parallel verification. The Journal of
Supercomputing 2015; 71(8):2922–2943.

2. Leveson NG, Turner CS. An investigation of the therac-25 accidents. Computer 1993; 26(7):18–41.
3. Wikipedia. Mars pathfinder 1997. URL https://en.wikipedia.org/wiki/Mars_Pathfinder#ci

te_note-24.
4. Jesdanun A. General electric acknowledges northeastern blackout bug 20ww. URL http://www.security

focus.com/news/8032.
5. Net X. Nasdaq ceo blames software design for delayed facebook trading 2012. URL http://www.cs.com.c

n/english/com/201205/t20120521_3337908.html.
6. Serna FJ. MS08-061 : the case of the kernel mode double-fetch. https://blogs.technet.microsoft.

com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/.
7. Jurczyk M, Coldwind G. Identifying and exploiting windows kernel race conditions via memory access patterns.

Technical Report, Google Research 2013. http://research.google.com/pubs/archive/42189.
pdf.

8. Matousec. Khobe 8.0 earthquake for windows desktop security software 2010. URL http://www.matous
ec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-sof
tware.php.

9. Wilhelm F. Tracing privileged memory accesses to discover software vulnerabilities. Master’s Thesis, Karlsruher
Institut für Technologie 2015.

10. Bishop M, Dilger M, et al.. Checking for race conditions in file accesses. Computing systems 1996; 2(2):131–152.
11. Watson RN. Exploiting concurrency vulnerabilities in system call wrappers. First USENIX Workshop on Offensive

Technologies, WOOT ’07, 2007.
12. Yang J, Cui A, Stolfo S, Sethumadhavan S. Concurrency attacks. Proceedings of the 4th USENIX Conference on

Hot Topics in Parallelism, HotPar’12, USENIX Association, 2012.
13. Chen H, Wagner D. Mops: an infrastructure for examining security properties of software. Proceedings of the 9th

ACM conference on Computer and communications security, ACM, 2002; 235–244.
14. Cowan C, Beattie S, Wright C, Kroah-Hartman G. Raceguard: Kernel protection from temporary file race

vulnerabilities. USENIX Security Symposium, 2001; 165–176.
15. Lhee KS, Chapin SJ. Detection of file-based race conditions. International Journal of Information Security 2005;

4(1-2):105–119.
16. Payer M, Gross TR. Protecting applications against TOCTTOU races by user-space caching of file metadata.

Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE ’12, 2012.
17. Cai X, Gui Y, Johnson R. Exploiting unix file-system races via algorithmic complexity attacks. 30th IEEE

Symposium on Security and Privacy, 2009; 27–41.
18. Voung JW, Jhala R, Lerner S. Relay: static race detection on millions of lines of code. Proceedings of the the

6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ACM, 2007; 205–214.

19. Pratikakis P, Foster JS, Hicks M. Locksmith: Practical static race detection for c. ACM Transactions on
Programming Languages and Systems (TOPLAS) 2011; 33(1):3.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

https://en.wikipedia.org/wiki/Mars_Pathfinder#cite_note-24
https://en.wikipedia.org/wiki/Mars_Pathfinder#cite_note-24
http://www.securityfocus.com/news/8032
http://www.securityfocus.com/news/8032
http://www.cs.com.cn/english/com/201205/t20120521_3337908.html
http://www.cs.com.cn/english/com/201205/t20120521_3337908.html
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
http://research.google.com/pubs/archive/42189.pdf
http://research.google.com/pubs/archive/42189.pdf
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php

20 P. WANG ET AL.

20. Huang J, Zhang C. Persuasive prediction of concurrency access anomalies. Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ACM, 2011; 144–154.

21. Chen J, MacDonald S. Towards a better collaboration of static and dynamic analyses for testing concurrent
programs. Proceedings of the 6th workshop on Parallel and distributed systems: testing, analysis, and debugging,
ACM, 2008; 8.

22. Engler D, Ashcraft K. Racerx: effective, static detection of race conditions and deadlocks. ACM SIGOPS Operating
Systems Review, vol. 37, ACM, 2003; 237–252.

23. Lu K, Wu Z, Wang X, Chen C, Zhou X. Racechecker: efficient identification of harmful data races. 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, IEEE, 2015; 78–85.

24. Wu Z, Lu K, Wang X, Zhou X. Collaborative technique for concurrency bug detection. International Journal of
Parallel Programming 2015; 43(2):260–285.

25. Sen K. Race directed random testing of concurrent programs. ACM SIGPLAN Notices 2008; 43(6):11–21.
26. Kasikci B, Zamfir C, Candea G. Racemob: crowdsourced data race detection. Proceedings of the twenty-fourth

ACM symposium on operating systems principles, ACM, 2013; 406–422.
27. Kasikci B, Zamfir C, Candea G. Data races vs data race bugs: telling the difference with portend. ACM SIGPLAN

Notices 2012; 47(4):185–198.
28. Zhang W, Sun C, Lu S. Conmem: detecting severe concurrency bugs through an effect-oriented approach. ACM

SIGARCH Computer Architecture News, vol. 38, ACM, 2010; 179–192.
29. Microsoft. How to share memory between user mode and kernel mode 2015. URL https://support.micr

osoft.com/en-us/kb/191840.
30. Lewis N. Khobe attack technique: Kernel bypass risk or much ado about nothing? 2010. URL

http://searchsecurity.techtarget.com/tip/KHOBE-attack-technique-Kernel-b
ypass-risk-or-much-ado-about-nothing.

31. Serna FJ. Ms08-061 : The case of the kernel mode double-fetch 2008. URL https://blogs.technet.mi
crosoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fet
ch/.

32. Cox MJ. Bug 166248 - can-2005-2490 sendmsg compat stack overflow 2005. URL https://bugzilla.red
hat.com/show_bug.cgi?id=166248.

33. How double-fetch situations turn into double-fetch vulnerabilities: A study of double fetches in the linux
kernel. 26th USENIX Security Symposium (USENIX Security 17), USENIX Association: Vancouver, BC,
2017. URL https://www.usenix.org/conference/usenixsecurity17/technical-sessi
ons/presentation/wang-pengfei.

34. Wang P. Double-fetch bug in linux-4.6/drivers/platform/chrome/cros ec dev.c 2016. URL https://bugzil
la.kernel.org/show_bug.cgi?id=120131.

35. Wang P. Double-fetch bug in linux-4.5/drivers/s390/char/sclp ctl.c 2016. URL https://bugzilla.kerne
l.org/show_bug.cgi?id=116741.

36. Prpic M. Cve-2016-6516 kernel: vfs: ioctl: double fetch leading to heap overflow 2016. URL https://bugz
illa.redhat.com/show_bug.cgi?id=1362457.

37. Makelinux. I/o ports and i/o memory. http://www.makelinux.net/ldd3/chp-9-sect-1.
38. Makelinux. Using i/o memory. http://www.makelinux.net/ldd3/chp-9-sect-4.
39. Wiki. Memory-mapped i/o. https://en.wikipedia.org/wiki/Memory-mapped_I/O.
40. Hong K. Memory-mapped i/o vs port-mapped i/o - 2017. http://www.bogotobogo.com/Embedded/me

mory_mapped_io_vs_port_mapped_isolated_io.php.
41. Eckelmann S. [patch-resend] backports: Fix double fetch in hlist for each entry* rcu 2014. URL https:

//www.spinics.net/lists/backports/msg03072.html.
42. Wilhelm F. Xen xsa 155: Double fetches in paravirtualized devices 2015. URL https://www.insinuator

.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/.
43. Wikipedia. Crash (computing) 2017. URL https://en.wikipedia.org/wiki/Crash_%28computi

ng%29.
44. Exploiting windows drivers: Double-fetch race condition vulnerability 2016. URL http://resources.in

fosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-v
ulnerability/.

45. Vulnerability caused by inconsistency checking 2011. URL https://maikiforever.wordpress.com
/2011/10/07/.

46. Bauer S. Linux ¿= 4.5 double fetch leading to heap overflow 2016. URL http://www.openwall.com/lis
ts/oss-security/2016/07/31/6.

47. Jurczyk M, Coldwind G. Bochspwn: Identifying 0-days via system-wide memory access pattern analysis. Black Hat
2013 2013. http://vexillium.org/dl.php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind
.pdf.

48. Lawall J, Laurie B, Hansen RR, Palix N, Muller G. Finding error handling bugs in OpenSSL using Coccinelle.
European Dependable Computing Conference (EDCC), 2010; 191–196.

49. Volos H, Tack AJ, Swift MM, Lu S. Applying transactional memory to concurrency bugs. ACM SIGPLAN Notices,
vol. 47, ACM, 2012; 211–222.

50. Pankratius V, Adl-Tabatabai AR, Otto F. Does transactional memory keep its promises?: results from an empirical
study. Univ., Fak. für Informatik, 2009.

51. Rossbach CJ, Hofmann OS, Witchel E. Is transactional programming actually easier? ACM Sigplan Notices 2010;
45(5):47–56.

52. Min SL, Choi JD. An efficient cache-based access anomaly detection scheme. ACM SIGARCH Computer
Architecture News 1991; 19(2):235–244.

53. Prvulovic M. Cord: Cost-effective (and nearly overhead-free) order-recording and data race detection. High-
Performance Computer Architecture, 2006. The Twelfth International Symposium on, IEEE, 2006; 232–243.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

https://support.microsoft.com/en-us/kb/191840
https://support.microsoft.com/en-us/kb/191840
http://searchsecurity.techtarget.com/tip/KHOBE-attack-technique-Kernel-bypass-risk-or-much-ado-about-nothing
http://searchsecurity.techtarget.com/tip/KHOBE-attack-technique-Kernel-bypass-risk-or-much-ado-about-nothing
http://searchsecurity.techtarget.com/tip/KHOBE-attack-technique-Kernel-bypass-risk-or-much-ado-about-nothing
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://bugzilla.redhat.com/show_bug.cgi?id=166248
https://bugzilla.redhat.com/show_bug.cgi?id=166248
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://bugzilla.kernel.org/show_bug.cgi?id=120131
https://bugzilla.kernel.org/show_bug.cgi?id=120131
https://bugzilla.kernel.org/show_bug.cgi?id=116741
https://bugzilla.kernel.org/show_bug.cgi?id=116741
https://bugzilla.redhat.com/show_bug.cgi?id=1362457
https://bugzilla.redhat.com/show_bug.cgi?id=1362457
http://www.makelinux.net/ldd3/chp-9-sect-1
http://www.makelinux.net/ldd3/chp-9-sect-4
https://en.wikipedia.org/wiki/Memory-mapped_I/O
http://www.bogotobogo.com/Embedded/memory_mapped_io_vs_port_mapped_isolated_io.php
http://www.bogotobogo.com/Embedded/memory_mapped_io_vs_port_mapped_isolated_io.php
https://www.spinics.net/lists/backports/msg03072.html
https://www.spinics.net/lists/backports/msg03072.html
https://www.insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/
https://www.insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/
https://en.wikipedia.org/wiki/Crash_%28computing%29
https://en.wikipedia.org/wiki/Crash_%28computing%29
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
https://maikiforever.wordpress.com/2011/10/07/
https://maikiforever.wordpress.com/2011/10/07/
http://www.openwall.com/lists/oss-security/2016/07/31/6
http://www.openwall.com/lists/oss-security/2016/07/31/6
http://vexillium.org/dl.php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind.pdf
http://vexillium.org/dl.php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind.pdf

A SURVEY OF THE DOUBLE-FETCH VULNERABILITIES 21

54. Prvulovic M, Torrellas J. Reenact: Using thread-level speculation mechanisms to debug data races in multithreaded
codes. Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on, IEEE, 2003; 110–121.

55. Zhou P, Teodorescu R, Zhou Y. Hard: Hardware-assisted lockset-based race detection. High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on, IEEE, 2007; 121–132.

56. Muzahid A, Suárez D, Qi S, Torrellas J. Sigrace: signature-based data race detection. ACM SIGARCH Computer
Architecture News, vol. 37, ACM, 2009; 337–348.

57. Erickson J, Musuvathi M, Burckhardt S, Olynyk K. Effective data-race detection for the kernel. OSDI, vol. 10,
2010; 1–16.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/4345

	1 Introduction
	2 Related Works
	3 Motivation
	3.1 Racing Between Kernel and User Space
	3.2 Double-Fetch Vulnerabilities Cause the KHOBE Attack
	3.3 Methodology

	4 Diversity of Double-Fetch Vulnerabilities
	4.1 Kernel-independent
	4.1.1 Famous In Windows Kernel
	4.1.2 Even Earlier in Linux Kernel
	4.1.3 Between Guest OS and Hypervisor

	4.2 Patterns Play A Significant Role
	4.2.1 Size Checking.
	4.2.2 Shallow Copy
	4.2.3 Inter-Procedure.

	4.3 Peripheral Devices Are Not Safe
	4.4 Beyound Ordinary Source Code
	4.4.1 Macro Substitution
	4.4.2 Compiler Optimization

	5 Discussion
	5.1 Double-fetch Vulnerabilities Cause Serious Consequences
	5.2 Exploiting Double-fetch Vulnerabilities Is Indeed Viable
	5.3 Implications on Detection
	5.4 Strategies on Prevention

	6 Conclusions

