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Abstract A race condition is a common trigger for
concurrency bugs. As a special case, a race condition can
also occur across the kernel and user space causing a
double-fetch bug, which is a field that has received little
research attention. In our work, we first analyzed real-world
double-fetch bug cases and extracted two specific patterns
for double-fetch bugs. Based on these patterns, we proposed
an approach of multi-taint parallel tracking to detect
double-fetch bugs. We also implemented a prototype called
DFTracker (double-fetch bug tracker), and we evaluated it
with our test suite. Our experiments demonstrated that it
could effectively find all the double-fetch bugs in the test
suite including eight real-world cases with no false negatives
and minor false positives. In addition, we tested it on Linux
kernel and found a new double-fetch bug. The execution
overhead is approximately 2x for single-file cases and
approximately 9x for the whole kernel test, which is
acceptable. To the best of the authors’ knowledge, this work
is the first to introduce multi-taint parallel tracking to
double-fetch bug detection—an innovative method that is
specific to double-fetch bug features—and has better path
coverage as well as lower runtime overhead than the widely
used dynamic approaches.
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1 Introduction

In recent years, with the wide application of multi-core
technology in hardware, multi-thread programs have been
increasingly used, and the reliability of concurrent programs
has become a significant issue. As concurrent processing is
primarily designed to improve process speed, concurrent
programming is pervasively used in large-scale
multi-functional software that has intensive computation and
real-time demand, such as industrial control software,
operating systems, and complex applications. Therefore,
concurrent program reliability affects not only daily life
applications but also social stability and national security.

A race condition is a situation where a shared object is
accessed concurrently but without proper synchronization to
force the ordering. Historically, software errors caused by
race conditions led to many significant security incidents,
such as the Therac-25 accident [1], the 2003 North
American blackout, and the 2012 Facebook IPO delay, all of
which resulted in significant casualties or loss of property,
having profound impacts. A race condition is a typical
trigger for concurrency bugs, which varies significantly and
can occur with different granularity throughout the entire
system. For example, racing between common threads, i.e.,
data race [2] [3] [4]; racing between system processes [5];
racing between hardware devices [1]; racing between
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different library methods invocation [6]; racing when
accessing the file system [7]; racing between events in
event-driven mobile applications [8] [9]; and even beyond a
single operating system, such as racing between a hypervisor
and guest virtual operating system [10] (XenPwn); racing
between different computing nodes in a distributed
computing cluster [11]. The most general case is a data race,
which is the race condition among user threads. A data race
occurs when two threads are about to access the same
memory location, and at least one of the two accesses is a
write, and the relative ordering of the two accesses is not
enforced by any synchronization primitives [12].

In addition to the above cases, a race condition can occur
across the kernel and user space. This situation can cause a
special case of time-of-check to time-of-use (TOCTOU)
issue, and Serna introduced the term “double fetch” to
describe it (see CVE-2008-2252). A double-fetch bug
occurs when the kernel (e.g., via a syscall) reads the same
value that resides in the user space twice, first time for
verifying or establishing a relation with the kernel and the
second time for use. Meanwhile, a concurrently running user
thread changes the value under a race condition. If the value
is modified within the time window between the two kernel
reads, a data inconsistency occurs, which may lead to grave
consequences for the kernel, such as buffer overflows,
privilege escalation, information leakage, or even kernel
crash. Jurczyk and Coldwind [13] were the first to study the
double-fetch issue systematically in their Bochspwn project.
They detected double-fetch issues based on memory access
tracing and discovered a series of double-fetch bugs in the
Windows kernel. However, their dynamic approach is
limited in the coverage it can achieve, and we cannot apply it
to the code that needs specific hardware to be executed. For
example, it cannot analyze a driver without having the
driver’s device.

Double-fetch situations are pervasive in the real world,
including platforms such as Windows, Linux, and FreeBSD.
In addition, double-fetch bugs occur not only in the source
code but also in macros [14]. They could also be introduced
by the compiler during compiling [15], which are difficult to
detect and prevent. Several approaches have been proposed
for race condition detection at the memory access level.
Static approaches analyze the program without running
it [16] [17] [18] [19] [20]. They can find the corner cases
because of the better coverage of the code and the overall
knowledge of the program. However, the major
disadvantage is the false reports generated owing to the lack
of the program’s full runtime execution context. Dynamic

approaches execute the program to verify race
conditions [21] [22] [2], checking whether a race could
cause program failure in executions. They control the active
thread scheduler to trigger specific interleaving to increase
the probability of bug manifestation [23]. Nevertheless,
runtime overhead is a severe problem, and it could even
impose more than 20x overhead when detecting
memory-intensive programs [24] [25]. Unfortunately, none
of the existing approaches can be applied to double-fetch
bug detection directly, and the reasons are as follows.

• A double-fetch bug is caused by the race condition
between kernel and user space, which is different from
a typical data race because the race condition is
separated by the kernel and user space. For a typical
data race, the read and write operations exist in the
same address space. Therefore, most of the previous
approaches detect data races by identifying both the
read and write operations that access the same memory
location. However, it is different for a double-fetch bug.
The kernel side only contains two reads whereas the
write resides in the user thread. Moreover, the write of
the user thread is potential, which means it does not
essentially exist when analyzing the program, but can
be created by a malicious user to trigger the race
condition.
• The involvement of the kernel makes a double-fetch

bug different in the way it accesses data. Owing to the
isolation of virtual memory spaces, the kernel fetching
data from the user space to kernel space relies on a
specific internal scheme (e.g., copy functions in Linux:
copy_from_user(), get_user() ), rather than
dereferencing the user pointer directly, which means
the common data race detection approaches based on
pointer dereference are no longer applicable.
• Moreover, a double-fetch bug is rather complicated as a

semantic bug. A double-fetch bug requires a fetch (the
check) phase and a use phase (where the fetched data is
used). Although the check can be located by matching
the patterns of fetch operations, the use of the fetched
data varies considerably. Therefore, we need to
consider the double-fetch characteristics, and previous
approaches cannot be adopted directly.
• Finally, as a special case of TOCTOU bug, a

double-fetch bug can turn into a double-fetch
vulnerability once the caused result is exploitable, such
as buffer overflow, information leakage, and kernel
crash. A typical data race is caused by specific thread
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interleaving with inappropriate synchronization,
whereas a double-fetch bug might be facing the race
condition crafted by a malicious user, who has a clear
purpose and could cause more severe results.

Due to the above reasons, the double-fetch issue is special
and previous approaches are neither applicable nor effective.
As the double-fetch issue is a relatively new research area,
few systematic works have been performed on double-fetch
bug detection except Bochspwn. Thus, in this paper, we
propose an innovative approach named multi-taint parallel
tracking that is specific to double-fetch bug detection. Our
approach is based on the extracted double-fetch bug patterns
and specific to double-fetch features. It requires no
hardware, which is suitable for code analysis such as drivers.
In addition, our static-based approach is path-sensitive,
which achieves better coverage than previous dynamic
approaches and with lower overhead. Overall, our main
contributions include the following.

- Extraction of double-fetch bug specific patterns. As
per the analysis of real-world double-fetch bugs, we
extracted two double-fetch bug patterns based on
program execution path and branch condition, which
are specific to the feature as well as semantic of
double-fetch bugs.

- Multi-taint parallel tracking approach. Based on the
extracted double-fetch bug patterns, we proposed an
approach named multi-taint parallel tracking to detect
double-fetch bugs. To the best of the authors’
knowledge, this work is the first to introduce
multiple-taint parallel tracking to double-fetch bug
detection, which maps the time factor of memory
access ordering to the space factor of different tainted
variables, specific to double-fetch bug features.

- Implementation and evaluation of the proposed
approach. We implemented a prototype of our
proposed approach called DFTracker (double-fetch bug
tracker), which is a checker of the Clang Static
Analyzer. Experiments have proved its feasibility and
viability. DFTracker could successfully find all the
double-fetch bugs from the test cases as well as some
existing real-world double-fetch bugs, with no false
negatives and minor false positives. The overhead is no
more than 2x.

- Discovery of a new double-fetch bug. We tested
DFTracker on Linux kernel-3.18, and found a new
double-fetch bug in file /fs/fhandle.c. The
execution overhead is approximately 9x for the

full-path exploration of the entire kernel, which is
acceptable. We provide a detailed analysis of this new
bug in Section 6.1.

The rest of the paper is organized as follows. In Section
2, we present the background and introduction to issues that
are related to double fetch. In Section 3, we analyze some
real-world double-fetch bug cases, extract two patterns, and
propose our new approach based on these basic patterns. In
Section 4, we describe the design and implementation of the
prototype. In Section 5, we evaluate our work with some
test experiments and compare the results with the work of
others. In Section 6, we present a detailed analysis of the
new bug and provide some useful advice on double-fetch bug
prevention. Section 7 surveys the related work. Finally, we
present the conclusions of our work in Section 8.

2 Background

2.1 Copy Scheme between Kernel and User Space

In modern computer systems, the memory is divided into the
kernel space and the user space. The kernel space is where
the kernel code is stored and executes, whereas the user
space is where regular user processes run. The kernel space
and the user space are independent and implemented in
separate address spaces. As the virtual address spaces are
mapped to a considerably smaller physical address space
through page tables, pages are dynamically swapped in and
out to improve the utilization of the physical memory. This
virtual memory model isolates each address space, including
the kernel space. In the user space, a shared memory region
can be created and shared between two or more processes to
facilitate the inter-process communication. Each process
maps the shared memory region to a different address in
their respective address spaces, and data from the other
address space can be accessed by directly dereferencing a
pointer. However, things are different between the kernel
space and the user space. As the kernel address space and
the user address space are both virtual and physically
isolated, shared memory access is not feasible. Therefore,
different copy schemes are provided by the kernel to
exchange data between the kernel space and user space. For
example, some specific copy functions are created to
perform this job in Linux, such as copy_from_user(),
copy_to_user(), or macros such as get_user() and
put_user().

Copy functions not only exchange data between the
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kernel and the user space but also provide protection
mechanisms on memory accessing. The return value
indicates whether the copy operation is successful, and
exceptions such as illegal address access or page faults are
handled properly. Copying data through these copy
functions is the only way to communicate between the
kernel space and user space in Linux. Therefore, any
occurrence of double-fetch issue should involve invocations
of these copy functions.

2.2 TOCTOU

A TOCTOU issue (or bug) is caused by changes between the
checking of a condition and the use of the result of that
check (by which the condition no longer holds). When a
program checks for a particular characteristic of an object
(or event) to take action based on the assumption that the
characteristic still holds, if some action during that interval
invalidates the assumption, the results of the second action
may not be what was intended [26]. The invalidation of the
assumption (data inconsistency) in TOCTOU is usually
caused by a race condition, which results from improper
synchronized concurrent accesses to a shared object. There
are varieties of shared objects in a computer system, such as
files [26], sockets [27], and memory locations [28].
Therefore, a TOCTOU issue can exist in different layers
throughout the system.

TOCTOUs are common in Unix file systems, which can
date back to the 1990s. During the past decades, numerous
approaches [29] [30] [31] [7] [32] have been proposed to
solve this problem, but there is still no general, portable,
secure way for applications to access the file system in a
race-free way due to the complexity of this issue. These
approaches have to consider many specific aspects of this
issue, such as the mapping between filenames and inode, the
resolution of symbolic links, the UNIX file-system interface
and implementation. Static analysis for file-system races
results in numerous false positives and negatives, whereas
kernel-based runtime race detectors and preventers are
operating system specific and therefore may not catch all
types of races.

2.3 Double Fetch

A double fetch is a special case of TOCTOU that occurs in
memory access level involving the kernel. There is no actual
shared object but multiple reads of the same user space data
from the kernel. As illustrated in Fig. 1, a double-fetch bug
occurs within a kernel function, such as a system call, which

Kernel Function

(syscall)

Switch the value

Memory data

First fetch to

verify

Racing Thread

Second fetch

to use
Kernel Space

Time Window

User Space

User Thread

Fig. 1 Illustration of how a double-fetch bug occurs

is invoked by a user application from user mode. The kernel
fetches a value from user space the first time to verify or to
establish the relation between kernel objects, and then
fetches it again to use, whereas a concurrently running user
thread changes the value under a race condition. The
inconsistency caused between the two fetches may violate
some assumptions made by the kernel based on the first
fetch, which is likely to cause serious problems. Moreover,
the involvement of the kernel worsens the consequences of a
double-fetch bug. A double-fetch bug can turn into a
double-fetch vulnerability once the consequence is
exploitable, such as buffer overflow, information leakage,
and kernel crash.

As a special case of TOCTOU issue that occurs in the
memory access level, a double-fetch bug focuses on the
interaction between the kernel and user space, which means
previous TOCTOU detection approaches specified for the
file system or other shared objects are no longer applicable.
Although dynamic approaches are easy to conduct, problems
such as path coverage and hardware requirement restrict the
usefulness. In addition, instrumenting the kernel introduces
huge runtime overhead that is sometimes unbearable, and it
is also likely to influence the functionality of the kernel and
affect the results.

A double-fetch bug is a special TOCTOU issue that
occurs when the kernel is accessing user memory space,
which is triggered by a race condition between the kernel
and user space. In other words, a double-fetch bug combines
a race condition with a TOCTOU bug. The race condition
between the kernel and the user space plays a significant role
in causing a double-fetch bug. Even though the traditional
TOCTOU can be a single-thread pattern, the double-fetch
issue has to be multi-threaded. Therefore, a double-fetch
bug is different from previously known cases that are
specific to the shared objects (e.g., a file or a socket). We
propose an approach that is specific to the double-fetch bug
feature of accessing user space memory from kernel space.
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1 void win32k_entry_point(…) {

2 ...

3 my_struct = (PMY_STRUCT) lParam;

4 if (my_struct ->lpData) {

5 cbCapture = sizeof(MY_STRUCT) + my_struct->cbData; //1st fetch

6 ...

7 my_allocation = UserAllocPoolWithQuota(cbCapture, TAG_SMS_CAPTURE))

8 if ( my_allocation != NULL) {

9 RtlCopyMemory(my_allocation, my_struct->lpData, my_struct->cbData); //2nd fetch

10 }

11 }

12 ...

13 }

Fig. 2 Double-fetch bug in CVE-2008-2252

3 Pattern-Based Double-Fetch Bug Detection

3.1 Real-World Case Study

Double-fetch bugs have existed for a very long time;
however, owing to the uncertainty of appearance and the
lack of systematic study, only a few were discovered and
reported. We collected as many cases as possible and finally
obtained 11 real-world cases to carry out our study. Owing
to restrictions in article length, we only present three
representative cases here to demonstrate how a double-fetch
bug occurs.

CVE-2008-2252: Here, we present a double-fetch bug
case in win32k.sys, which had been patched in
MS08-061 [33]. In this case, an inadequate pool allocation
and a later memory pool overflow can be caused, which
might lead to the execution of arbitrary code in kernel mode.
We can see from Fig. 2, my_struct->cbData is fetched
twice at line 5 and line 9. However, the constraint at line 8,
which aims to guarantee the successful pool allocation, is no
longer effective after the second fetch of
my_struct->cbData (line 9), causing the potential
inconsistency between the check (branch at line 8) and the
use of the fetched value (line 9). Therefore, a concurrently
running thread may have the chance to switch
my_struct->cbData to a large value, which will result
in pool overflow.

CVE-2005-2490: In Linux kernel 2.6.9, when we copy
user control content to kernel using the function
sendmsg() in file compat.c, the same user data are
accessed twice without sanity check at the second time. This
can cause a kernel buffer overflow and therefore could lead
to privilege escalation. As shown in Fig. 3, this function
works in two steps: examining the parameters in the first
loop (checked at line 8) and copying the user data in the
second loop (used at line 19). However, only the first fetch

1   int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg, unsigned 

char *stackbuf, int stackbuf_size){

2     ...

3     while(ucmsg != NULL) {

4         if(get_user(ucmlen, &ucmsg->cmsg_len))   // 1st fetch

5             return -EFAULT;

6         if(CMSG_COMPAT_ALIGN(ucmlen) < 

CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))

7            return -EINVAL;

8        if((unsigned long)(((char __user *)ucmsg – (char __user*) kmsg->

msg_control) + ucmlen) > kmsg->msg_controllen) // check

9            return -EINVAL;

10       ...

11       ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

12   }

13   ...

14   while(ucmsg != NULL) {

15      __get_user(ucmlen, &ucmsg->cmsg_len); //2nd fetch

16      tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +

CMSG_ALIGN(sizeof(struct cmsghdr)));

17      kcmsg->cmsg_len = tmp;

18      ...

19      if(copy_from_user(CMSG_DATA(kcmsg),CMSG_COMPAT_DATA

(ucmsg), (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))))) //use

20         goto out_free_efault;

21      kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp));

22      ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

23   }

24   ...

Fig. 3 Double-fetch bug in CVE-2005-2490

(line 4) of the parameter ucmlen is examined (line 8),
whereas the second fetch (line 15) is free from constraint,
which may cause potential data inconsistency between the
check and the use. This could cause buffer overflow in the
copy function (line 19) if the parameter ucmlen is modified
by another concurrently running thread at the user side.

Preprocessed macro: A double-fetch bug can also occur
in the preprocessing stage such as macro expansion, and we
give an example here [14] in file list.h of Linux3.9-rc1,
which had been patched in rc-3. As shown in Fig. 4,
function hlist_entry_safe() fetches the pointer ptr
twice in the ternary operator (line 3), the first time to test for
nullity and the second time to pass it as an argument to
hlist_entry(), which computes the offset back to the
enclosing structure based on ptr. Therefore, the use of ptr
in the second fetch is based on the check of ptr in the first
fetch; only when ptr passes the nullity test can it be used in

1 #ifndef hlist_entry_safe

2 #define hlist_entry_safe(ptr, type, member) \ 

3     (ptr) ? hlist_entry(ptr, type, member) : NULL

4 #undef hlist_for_each_entry

5 #define hlist_for_each_entry(pos, head, member)

Fig. 4 Double-fetch bug in a macro definition
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...

1 a = read(addr,len)          // first fetch to verify

2 ...

3 if Condition(a) // branch condition controlled by first fetch

4     ...

5 a = read(addr,len)     // second fetch to use

6     ...

7 memcpy(dst,src,a)     // use of a, from second fetch

8     ...                                

Pattern 1

...

1 a = read(addr,len)        // first fetch pass to b

2 b = f(a)

3 ...                          

4 a = read(addr,len)       // second fetch to verify

5 ...

6 if Condition(a) :         // branch condition controlled by second fetch

7    ...

8 memcpy(dst,src,b)   // use of b, passed by first fetch

...                               

Pattern 2

Fig. 5 Double-fetch bug pattern 1 and pattern 2

hlist_entry(). However, the pointer is likely to be
changed between the two fetches under a race condition,
which could lead to a NULL-pointer crash when ptr is
used in hlist_entry(). In addition, this occurs in the
preprocessing stage, and would be hard to discover using a
regular approach.

3.2 Double-Fetch Bug Patterns

After analyzing the real-world double-fetch bug cases, we
can conclude that a double-fetch bug occurs because the
programmer uses a newly fetched value instead of the
previously verified one. As a matter of fact, there should
always be some restrictions of the function arguments, such
as the pointer should not be NULL and the length should not
exceed the buffer size. In general, programmers should
verify the function arguments before using them. However,
problems occur when they fail to use the arguments that
have been verified. Instead, they are likely to retrieve the
arguments from user space one more time, which causes a
double-fetch bug. This is more likely to occur when the
source code is complicated and long. Cases in which the
user pointer instead of the fetched value is passed to other
function invocations also increase the occurrence.

To characterize a double-fetch bug more precisely, we
abstract some critical elements from the known double-fetch
bug analysis, which are useful for the pattern-based
detection approach. These elements are listed as follows.

- A kernel function: where a double fetch takes place.

- A first kernel read: reads a value from the user space.
The value fetched by this read is used to verify or
establish some relation.

- A branch condition: also known as the “check,” which
is controlled by the first fetched value. Only when this
condition is satisfied will the second fetch and the use of
the fetched value take place.

- A second kernel read: fetches the same value as the
first read or part of the data struct overlaps. The newly
fetched value is used later without another sanity check.

- Use of the fetched value: also known as the “use,”
which occurs after the second read and invalid value
may cause serious consequences.

As we can see from the elements listed, the branch
condition is a linkage that bridges the two kernel reads and
steers the execution toward the path that errors can be
triggered if the user data are modified. The second read is
the source of the bug, which breaks the consistency. The use
is the trigger of the bug, and no problems will occur if the
second fetched value is never used. We can conclude that a
potential double-fetch bug occurs in the following way.

The first fetched value controls a branch condition, which
is related to the verification of the value. Within this branch,
which means when the verification is passed, a second fetch
of the same value occurs, followed by the use of the newly
fetched value but without an additional check. This situation
covers most occurrences of the real double-fetch bugs.

Based on the double-fetch elements we extracted and the
above description, we propose two double-fetch bug
patterns, which are shown in Fig. 5. In pattern 1, a kernel
read first fetches a value and assigns it to variable a for
verification (line 1). If the value is valid, then it satisfies the
branch condition (line 3). Within this branch, a second
kernel read takes place (line 5), and the newly fetched value
is used (line 7), which may be a serious result owing to data
inconsistency. Pattern 2 is similar to pattern 1, except for the
ordering difference. A kernel read first fetches a value (line
1), but this value is not used to verify but passed to another
variable b (line 2). Then, a second kernel read occurs, which
fetches the value again, and assigns it to variable a to verify
(line 4). If it satisfies the branch condition (line 6), then it
comes to the use phase (line 8). However, in this pattern, it is
the old value b fetched the first time that is used by the
kernel, which may cause serious errors owing to data
inconsistency.

In summary, we propose two double-fetch bug patterns,
which are based on the extracted elements. In pattern 1, a
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valid value is changed to an invalid one after passing the
sanity check but before using it. In pattern 2, an invalid
value is changed to a valid one in the second fetch to pass
the sanity check; however, it is still the invalid one that is
used. Both situations can cause serious double-fetch bugs,
and these two patterns are used by the pattern-based
detection approach we propose.

3.3 Multi-Taint Parallel Tracking

A double-fetch bug occurs because the inconsistency of the
user data is violated between the two reads. Thus, the basic
idea of our approach is assuming that all the user data
fetched by kernel reads are UNTRUSTED , namely any
newly fetched data are inconsistent from the last fetch. In
other words, any second fetch of the same value obtains a
different one, which has already been changed by a
potentially malicious user thread.

With the help of taint tracking and symbolic execution, we
can analyze how the untrusted data propagates from being
introduced to being used. In our approach, a Taint is defined
as follows:

Taint = <number, time, origin>

where: number is the number tag of a taint, which is
generated and added to a variable when the kernel is
fetching new data from the user space; time indicates the
timestamp when this taint is introduced (by creation or
propagation); origin denotes the original memory address
that the user data come from, which is a user space address
where the kernel read takes place. In the implementation
level, a taint is a structural tag that is added to the symbolic
expression of a variable.

Therefore, we taint all the untrusted data read by the
kernel from the user space. Moreover, to distinguish where
the data come from, how the data propagate in the program,
and how they affect the execution, we add different taints
(different tag numbers) to data fetched by different kernel
reads. All the taints propagate independently, and all the
values generated by the following arithmetic computation
and logical computation during the tracking also inherit the
tainted property. As shown in Fig. 6 , we use a new taint
every time a kernel read takes place and propagate all the
taints concurrently while we perform the symbolic
execution. Our approach maps the time factor of memory
access ordering to the space factor of different tainted
variables, which is specific to double-fetch characteristics.

Based on the patterns we described in the last subsection,
we detect double-fetch bugs by checking taints and

0x10000000
Untrusted

User Space

Kernel Space

Kernel function

execution diagram

First read

Second read

MaliciousRacing

Thread Write

Fig. 6 Multi-taint parallel tracking overview

branches. Each time a tainted value is used, we check
whether this occurs within a branch controlled by different
taints from the same user space address. If yes, then the
check and the use of that value are obtaining data from
different read operations. Thus, a potential double-fetch bug
is indicated.

We now illustrate our method by a typical double-fetch
bug, which is especially common among device drivers. As
shown in Fig. 7 , in most situations, the kernel (e.g., syscalls
or drivers) needs to receive the message (a predesigned data
struct) from the user space, and send back the message after
processing it. However, the length of the message is often
unfixed, which means the kernel has to check the message
length first by only copying a fixed-length header to the
kernel (line 3) to access the size field of that header. Then,
the kernel allocates a buffer based on the length of the whole
message (line 7) and copies in the entire message by a
second copy (line 11). Finally, after being processed, the
message is copied back to the user space (line 15). A
double-fetch situation is inevitable when copying an
unfixed-length message between the kernel and the user
space. This double-fetch situation turns into a double-fetch
bug once the size field of the header in the second copied
message is used again (line 15), because size might be
changed between the two copies and consequences relevant
to size might have occurred, such as kernel information
leakage, buffer overflow, or over-boundary memory access.

We apply our multi-taint parallel tracking method to this
example. When the first fetch takes place, we add taint T1 to
the fetched value hdr (line 3). Therefore, size field of
hdr is tainted by T1, and branch condition at line 5 is also
controlled by T1. Then, taint T1 propagates to msg by the
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1 void kernel_func( *uptr){

2 ...

3 copy_from_user(hdr, uptr, sizeof(*hdr)); //Add taint T1 to hdr

4 ...

5 if ( hdr.size < MAXSIZE){ //Branch controlled by T1

6 ...

7 msg = kmalloc(hdr.size, GFP_KERNEL);

8 if (!msg)

9 return -ENOMEM;

10 ...

11 copy_from_user(msg, uptr, hdr.size); //Add taint T2 to msg

12 ...

13 process(msg);

14 ...

15 copy_to_user(msg, uptr, msg.size); //Usage of double fetched value

16 ...

17 }

18 else

19 return -EINVAL;

20 ...

21 }

Fig. 7 Typical double-fetch bug case

return value of a function call (line 7). When the second
fetch takes place, the new fetched value is tainted by new
taint T2 (line 11); therefore, msg carries both T1 and T2.
Finally, when msg.size is used (line 15), we check
whether this occurs within a tainted branch controlled by a
different taint that from the same memory location. In this
example, the use of msg.size resides in two branches
(line 5 and line 8), both of which are controlled by T1, but
msg.size is also tainted by T2. Then, a double-fetch bug
pattern is matched, and a potential double-fetch bug is
indicated. A potential double-fetch bug is reported when
there exists a situation in which the use of a tainted value
occurs within a different taint controlled branch. The
difference between the taints that come from the branch
condition (check) and used value (use) indicate the potential
inconsistency between the check and the use of the user
data. Therefore, a potential double-fetch bug is indicated.

We can see this more clearly from the program execution
diagram in Fig. 8. The red line indicates the execution paths
affected by the first fetch, namely tainted by T1; whereas
blue lines are paths affected by the second fetch, namely
tainted by T2. As we can see, the T1 controlled branch
conditions steer the program execution, and the use of
msg.size can occur only if the branch condition is
satisfied, which depends on the first fetch. However, even if
the first fetch makes this happen, the second fetch that takes
place within the tainted branch is still free from constraints.
Therefore, the fetched value can be any malicious value that
destroys the kernel use, leading to serious consequences.
However, if the used value and branch condition have the
same taint, it indicates the same value is passed down from

copy_from_user(msg, uptr, hdr.size)

hdr.size < MAXSIZE ?

process(msg)

copy_from_user(hdr, uptr, sizeof(*hdr)

copy_to_user(msg, uptr, msg.size)

msg = kmalloc(hdr.size, GFP_KERNEL)

!msg ?

return -ENOMEM

No

No

Yes

Yes

Fig. 8 Execution diagram of a conventional double-fetch bug case

check to use, the consistency is guaranteed, and no problems
will arise.

4 Implementation

We implemented a prototype based on our proposed
approach named DFTracker, which works as a customized
checker of the Clang Static Analyzer to automatically detect
double-fetch bugs from programs when compiling the
source code using Clang. Clang is a compiler frontend for
the C language family, and it uses LLVM as its backend. The
Static Analyzer is part of the Clang project and implemented
as a C++ library that can be used by other tools.

The analyzer core performs symbolic execution of the
given program by walking Clang’s control flow graph
(CFG). All the input values are represented by symbolic
values; further, the engine deduces the values of all the
expressions in the program based on the input symbols and
paths. The execution is path-sensitive and every possible
path through the program is explored. It collects the
constraints on symbolic values along each path, and uses
constraints to determine the feasibility of paths. As a regular
user, we construct our own checker with the interfaces
(callback functions) provided by the framework, regardless
of how the core symbolic execution works. When the
customized checker is invoked by the analyzer, the source
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Fig. 9 Architecture of the DFTracker implementation

code is analyzed automatically in a path-sensitive manner.
As shown in Fig. 9, DFTracker is mainly composed of

four parts: Branch Manager, Location Manager, Taint
Manager, and Detector. The whole detection procedure is
divided into two phases: a path-insensitive abstract syntax
tree (AST) scan and a path-sensitive symbolic execution.

4.1 Path-Insensitive AST Scan

The main goal of this procedure is to obtain useful
information about the source code, such as the branch
information and the function information. For each branch,
we record its location and branch condition in a struct called
GlobalBranchList, which is performed by Branch
Manager. For the function definitions in the code, we record
their FunctionDecls in a struct called
FunctionTable, which includes the function names,
function arguments, and arguments types. This procedure is
very fast as it is only a quick scan of the AST, which is a
preprocess of the symbolic execution in the second phase.

4.2 Path-Sensitive Symbolic Execution

In this phase, we conduct a full-path exploration of the
tested program by symbolic execution. During the
execution, DFTracker interacts with the Clang Static
Analyzer mainly by the following callback functions

provided by the infrastructure: CheckLocation(),
CheakBind(), CheckBranch(), CheckPreCall(),
CheckPostCall(). The components of DFTracker work
in the following manner.

(1) Taint Manager Taint Manager deals with taints,
which includes creating new taints, adding taints to a
TaintList, and some other searching and checking operations
that involve taints. In our system, a Taint struct is manifested
as a 3-tuple (number, time, origin), which indicates the taint
number, the timestamp when the taint is added, and the user
memory location where this tainted value comes from. Taint
Manager also creates a struct called TaintList, which is used
to store multiple taints at one time. When we propagate
taints from one variable to another or from a variable to a
branch, it is the TaintList that is actually being passed.
When a TaintList tl1 is passed to a variable a, and a

already has a TaintList called tl0, then these two TaintLists
will be merged, and we keep the new merged TaintList. The
merge process complies with the following rules.

- For taints from the same origin and have the same tag but
with different timestamps, only the taint with the newest
timestamp is retained, which means they are from the
same kernel read but propagete with different speed in
the kernel. Thus, a new taint will overwrite the old ones.

- For taints from different origins or the from the same
origin but with different tags, all are retained.

(2) Location Manager Location Manager works on a
struct called LocationMap, which maps the SymbolRef
of each variable to a TaintList. As is well known, we are not
able to obtain user data by pointer dereference directly in
Linux kernel, and the only way to do this is through the
so-called copy functions, such as copy_from_user()

and get_user(). Therefore, the copy functions should be
our start point. We hook the copy functions in the callback
function CheckPostCall(), and add the new taint to the
fetched value (the corresponding arguments) every time a
copy function is invoked. Then, we pass taints to the
variable that is assigned by a tainted variable, or to the return
value of a function that has a tainted argument. The
taint-passing procedure is conducted in callback functions
CheckBind() and CheckPostcall(). This is how the
taint propagation basically works in DFTracker.

(3) Branch Manager In addition to recording branch
information to the GlobalBranchList in the
path-insensitive phase, Branch Manager passes taints to
branches, which plays an important role in the propagation
of taints in our approach. This is performed in the
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Input: val  - variable that being accessed

Input: gbl GlobalBranchList that records all the branch info

Output: ret retval that indicates whether it is a Double-Fetch

begin:

if ( isTainted(val))

v_taintList = get_taintList(val)

if( gbl.findBranchByLoc(getSourceLoc(val))

branch = gbl.getBranchByLoc(getSourceLoc(val)

b_taintList = get_taintList(branch)

for i in v_taintList :

for j in b_taintList:

if(i.taint != j.taint && i.origin == j.origin)

return true

end

end

end

end    

end

return false

end

Algorithm of Double-Fetch Detection 

Fig. 10 Algorithm of double-fetch detection

CheckBranch() callback function. When the symbolic
execution reaches a branch, we examine the branch
condition; if the condition expression involves tainted
variables, then the branch should be tainted, and all the taints
that come from this branch condition should be added to the
TaintList associated with this branch. Here, we also need to
merge all the TaintLists that come from different variables in
the branch condition expression.

(4) Detector Detector is the brain of DFTracker, which
decides whether a case should be reported as a potential
double-fetch bug or not. With the help of the
CheckLocation() callback function, every time a
variable is accessed, we check whether this variable is
tainted: if yes, we continue to check whether this happens
within a branch controlled by a different taint that comes
from the same origin. If yes, then a situation that the
checked value and the used value come from different
memory reads is indicated, and a potential double-fetch bug
will be reported. The algorithm is shown in Fig. 10.

4.3 Optimization

To achieve better performance, we use the following
strategies to accelerate the execution and lower the overhead.

(1) Coarse Timeline. The timestamp system in
DFTracker is provided by a local timer. To lower the
overhead, we use a coarse time mechanism, which means
the timer only provides the relative orders of some critical

events, rather than an accurate system timestamp. The
timeline will be changed only when a taint is created, or a
taint is passed to another variable. Other events that have
nothing to do with the taint propagation will not affect the
timeline.

(2) Skip functions without pointer argument. Kernel
reads are necessary to make a double-fetch bug, and a kernel
function will not fetch data without a user pointer, which
means a pointer-type argument is essential for a kernel
function to make a double-fetch bug. We record the function
information in the AST scan phase, which includes the
function names, function arguments, and argument types. If
DFTracker obtains a function that does not have a pointer
argument, it will just skip it without checking to accelerate
the execution.

(3) Remove taint-free branches. In the AST scan phase,
we record all the branches in a struct called
GlobalBranchList. However, some of the branches
will never be tainted, which are called taint-free branches,
and we shall remove them from the GlobalBranchList
in order to accelerate the execution when searching for a
branch in the list. Every time we obtain a branch in the
CheckBranch() callback function, we pass taints to the
branch if the branch condition involves tainted variables.
Otherwise, the branch is taint-free, and we remove it from
the GlobalBranchList to accelerate the later check.

5 Evaluation

In this section, we provide the evaluation of our proposed
approach. The evaluation is conducted from aspects of
effectiveness, efficiency, and scalability. We also compare
our approach with the work of Bochspwn over these aspects.
Our test suite is composed of two parts, Benchmark Test and
Real Case Test; see Table 1.

• Benchmark Test (No.1–No.5) focuses on the validity of
the implementation of our proposed approach. The tests
include the two basic double-fetch bug patterns, the
propagation of the multi-taints, such as situations of
multiple tainted variables, cases of multiple functions
in a single file, and situations of double-fetch bugs
happening across embedded functions. Some corner
cases are also tested.
• Real Case Test (No.6–No.13) use cases of previous

real-world double-fetch bugs, which include cases from
both Linux and Windows platform. To perform the
comparison with the work of Bochspwn, we choose
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Table 1 Test Suite Introduction
No. Name Loc Description
1 Pattern1 57 Basic Pattern 1 of double fetch

in our proposed approach.
2 Pattern2 60 Basic Pattern 2 of double fetch

in our proposed approach.
3 Multi_Taints 67 Test of multiple taints from

multiple source parallel prop-
agation.

4 Multi_Functions 87 Test of multiple taints parallel
propagation in different func-
tions.

5 Embedded_Calls 57 Test of multiple taints prop-
agate across embedded func-
tion calls, double fetch hap-
pens across functions.

6 Win_Win32k 58 Real Windows double-fetch
bug in win32k.sys [33].

7 Win_Memcmp 47 Real Windows double-fetch
bug in memcmp() of Windows
8 [13].

8 Linux_Compat 598 Real double-fetch bug in com-
pat.c of Linux-2.6.9.

9 Linux_MicVirto 812 Real double-fetch bug in
mic_virto.c of Linux-4.5.

10 Linux_SclpCtl 145 Real double-fetch bug in
sclp_ctl.c of Linux-4.5.

11 Linux_CrosEcDev 353 Real double-fetch bug in
cros_ec_dev.c of Linux-4.5.

12 Linux_Auditsc 133 Real double-fetch bug in au-
ditsc.c of Linux-4.5.

13 Linux_Commctrl 100 Real double-fetch bug in
commctrl.c of Linux-4.5.

two real cases from Windows that were discovered by
them.

All the experiments were conducted on a machine with a
1.4 GHz, quad-core CPU, 8 GB physical memory, running
OSX 10.11.1 and Clang infrastructure version 3.8.0. The
source code of DFTracker is about 2,000 lines of code
(LOC).

5.1 Effectiveness

In this test, all the double-fetch bugs in the test suite were
reported, which proves the effectiveness of DFTracker
(shown in Table 2). In addition, no false negatives were
reported, which benefits from the full-path exploration in the
static approach. This is a big advantage over the widely used
dynamic approaches such as Bochspwn [13], which usually

Table 2 Effectiveness Test Result
No. Name Pattern True

Report
False
Positives

False
Negatives

1 Pattern1 1 1 0 0
2 Pattern2 2 1 0 0
3 Multi_Taints 1 1 0 0
4 Multi_Functions 1 2 0 0
5 Embedded_Calls 1 1 0 0
6 Win_Win32k 1 1 0 0
7 Win_Memcmp 1,2 2 2 0
8 Linux_Compat 1 1 2 0
9 Linux_MicVirto 1 1 0 0
10 Linux_SclpCtl 1 1 1 0
11 Linux_CrosEcDev 1 1 0 0
12 Linux_Auditsc 1 1 2 0
13 Linux_Commctrl 1 1 0 0

produce large numbers of false negatives due to the poor
path coverage.

As for the false positives, technically, they are duplicate
reports, which means a true bug is reported more than once,
rather than a non-bug case being reported. This is because,
based on our approach, DFTracker checks the potential
double-fetch bug when the symbolic execution reaches the
use of a tainted variable. However, once a double-fetch
pattern is matched, any use of that tainted variable within a
taint-controlled branch is reported. In other words, if the
tainted variable is used more than once within a
taint-controlled branch, each is reported. Therefore, the
“false positives” in Table 2 are actually duplicate reports of
the same double-fetch bug.

5.2 Efficiency

In the efficiency test, we paid attention to the overhead
introduced by DFTracker. As listed in Table 3, we set
execution baselines for comparison, and categorize the tests
as native compile, DFTracker disabled, and DFTracker
enabled. First, we natively compiled all the programs in the
test suite with Clang: results are shown in column 3, which
is the first baseline. Then we ran them again with Clang
Static Analyzer but disabled all the checkers: results are
shown in column 4, which is the second baseline. Finally,
we ran tests with DFTracker enabled, and the results are
shown in column 5. We calculated the overheads of
DFTracker disabled compared with native compiling; the
result is marked as O1 in column 6. Then, we compared the
overheads of DFTracker enabled with native compiling, and
the result is marked as O2 in column 7. Finally, the real
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Table 3 Efficiency Test Result
No. Name Native

Compile (s)
DFTracker
Disabled (s)

DFTracker
Enabled (s)

Overhead
O1 (%)

Overhead
O2(%)

Overhead
O2 - O1(%)

1 Pattern1 0.277 0.418 0.436 84.1 92.1 8.0
2 Pattern2 0.196 0.408 0.424 108.2 116.3 8.1
3 Multi_Taints 0.194 0.422 0.429 117.5 121.1 3.6
4 Multi_Functions 0.211 0.419 0.454 98.6 115.2 16.6
5 Embedded_Calls 0.196 0.410 0.425 109.2 116.8 7.6
6 Win_Win32k 0.198 0.403 0.430 103.5 171.2 67.7
7 Win_Memcmp 0.189 0.407 0.813 115.3 330.2 215.0
8 Linux_Compat 0.233 0.635 0.949 172.5 307.3 134.8
9 Linux_MicVirto 0.217 0.533 0.872. 145.6 301.8 156.2
10 Linux_SclpCtl 0.205 0.482 0.753 135.1 267.3 135.2
11 Linux_CrosEcDev 0.198 0.443 0.704 123.7 255.6 131.9
12 Linux_Auditsc 0.262 0.750 1.280 186.3 388.5 202.2
13 Linux_Commctrl 0.245 0.698 1.255 184.9 412.2 227.3

overhead introduced by DFTracker is O2 - O1, which is
shown in column 8.

From the results, we can see that the average overhead of
DFTracker is 101.1%, and approximately 2x at most, which
is acceptable for the single-file compiling. The overhead is
much lower than the dynamic approach that Bochspwn
adopted [13]. Theoretically, the overhead is mainly
introduced by the symbolic execution phase: the more
branches the tested program has, the longer time it takes.
This explains why the execution times of the real cases,
which are branch intensive, are much longer than the rest. In
our future work, we will try to prune some infeasible paths
to speed up the symbolic execution.

5.3 Scalability

DFTracker is implemented as a customized checker of the
Clang Static Analyzer, which can be applied to any C/C++

source code that is compiled by Clang. In general,
compiling the whole Linux kernel with Clang is not feasible
because some features in the kernel are only supported by
the GCC compiler, such as the _asm{} style of inline
assembly. However, with the help of the LLVMLinux
project, we successfully compiled Linux kernel with Clang
and tested DFTracker.

The test was conducted on an Ubuntu 14.04 machine with
Linux kernel 3.18, which is a long-term support version.
The compilation took approximately 18 h and 13 min,
whereas a native compilation of the kernel without the Static
Analyzer takes approximately 2 h. Therefore, the total
overhead is approximately 9x, which is acceptable for a
full-path exploration on the whole Linux kernel.

In total, we obtained 215 reports from the test. We used a
Python script to filter out the duplicate reports as we
mentioned in Section 5.1, and 61 cases remained. Then, we
manually analyzed these cases and found a new double-fetch
bug that was previously unknown in file /fs/fhandle.c
(a detailed analysis is given in Section 6.1). As for the rest
of the cases, five cases were double-fetch situations that
were protected by the schemes as we describe in Section 6.3.
Another 40 cases matched the double-fetch bug patterns, but
the fetched value could not cause an error. Finally, 15 false
reports were obtained due to the inaccuracy of the
implementation.

5.4 Comparison

As the double-fetch bug is a relatively new topic, few
systematic studies have been conducted except for the pilot
work of Bochspwn. Therefore, only the work of Bochspwn
is closely related to ours so that we could make a
comparison. However, owing to the unavailability of the
source code, we cannot duplicate the work directly. Hence,
we make the comparison indirectly from the results of their
experiments.

From the view of effectiveness, Win_Win32k and
Win_Memcmp are the cases that could be found by
Bochspwn and used as examples to demonstrate their work;
our approach could find them as well. However, other Linux
real cases such as Linux_Compat cannot be found by
Bochspwn owing to its Windows-specific implementation,
whereas our approach could successfully find them all.

In addition, DFTracker could find all the double-fetch
bugs in the test suite with no false negatives and minor false



Front. Comput. Sci.
13

166 static int handle_to_path(int mountdirfd, struct file_handle __user *ufh,

167 struct path *path)

168 {

169 int retval = 0;

170 struct file_handle f_handle;

171 struct file_handle *handle = NULL;

...

182 if (copy_from_user(&f_handle, ufh, sizeof(struct file_handle))) {

183 retval = -EFAULT;

184 goto out_err;

185 }

186 if ((f_handle.handle_bytes > MAX_HANDLE_SZ) ||

187 (f_handle.handle_bytes == 0)) {

188 retval = -EINVAL;

189 goto out_err;

190 }

191 handle = kmalloc(sizeof(struct file_handle) + f_handle.handle_bytes,

192 GFP_KERNEL);

193 if (!handle) {

194 retval = -ENOMEM;

195 goto out_err;

196 }

197 /* copy the full handle */

198 if (copy_from_user(handle, ufh,

199 sizeof(struct file_handle) +

200 f_handle.handle_bytes)) {

201 retval = -EFAULT;

202 goto out_handle;

203 }

204

205 retval = do_handle_to_path(mountdirfd, handle, path);

...

}

Fig. 11 New double-fetch bug in fhandle.c

positives (duplicate reports as we explained), whereas the
dynamic approach adopted by Bochspwn usually produces
large numbers of false negatives due to the poor path
coverage.

As for the efficiency, DFTracker introduces overhead of
approximately 2x for single files (real cases) and
approximately 9x for the whole Linux kernel, which is
acceptable. Bochspwn introduced severe runtime overhead
by the simulator in their dynamic approach. It took 15 h to
boot Windows in the simulator, and this did not cover full
path exploration.

Finally, for the aspect of scalability, DFTracker can
analyze the entire Linux kernel with full path coverage
within an acceptable time. However, Bochspwn is
Windows-specific and without full path coverage, scalability
is limited.

6 Discussion

6.1 About the Bug

In the evaluation section, our approach successfully found
all the already known real bugs in the first part and found a
new double-fetch bug in the second part performed on Linux
kernel-3.18. Here we provide a detailed analysis of the new
double-fetch bug in \fs\fhandle.c.

138 static int do_handle_to_path(int mountdirfd, struct file_handle *handle, struct path *path){

...

150 handle_dwords = handle->handle_bytes >> 2;

151 path->dentry = exportfs_decode_fh(path->mnt, (struct fid *)handle->f_handle,

152 handle_dwords, handle->handle_type,vfs_dentry_acceptable, NULL)

...

164 }

412 struct dentry *exportfs_decode_fh(struct vfsmount *mnt, struct fid *fid,

413 int fh_len, int fileid_type, int (*acceptable)(void *, struct dentry *), void *context) {

...

426 result = nop->fh_to_dentry(mnt->mnt_sb, fid, fh_len, fileid_type);

...

480 target_dir = nop->fh_to_parent(mnt->mnt_sb, fid, fh_len, fileid_type);

...

}

238 static struct dentry *ocfs2_fh_to_dentry(struct super_block *sb,

239 struct fid *fid, int fh_len, int fh_type) {

...

243 if (fh_len < 3 || fh_type > 2)

return NULL;

...

250 }

252 static struct dentry *ocfs2_fh_to_parent(struct super_block *sb,

253 struct fid *fid, int fh_len, int fh_type) {

...

257 if (fh_type != 2 || fh_len < 6)

return NULL;

...

264 }

Fig. 12 How the second fetched value in fhandle.c: is used

As we can see from Fig. 11, there are two kernel data
fetches in function handle_to_path() (line 182 and
line 198), both via user pointer ufh. However, the first fetch
only copies a struct header f_handle (tainted as T1) to
check the real struct length from its element
f_handle.handle_bytes (also tainted as T1) and
allocate a kernel buffer handle. After the second fetch, the
whole user data is copied to handle, which is tainted as
T2. Then handle is used at line 205, which occurs within a
branch (line 186) controlled by the first fetched value
f_handle.handle_bytes (tainted as T1). Since
handle also has the element handle_bytes, if this
handle_bytes is used again later on, then it is a situation
that matches the double-fetch bug pattern 1 as we proposed.
Both fetches involve handle_bytes; the first one controls
the branch (check), whereas the second one is for use,
indicating a potential data inconsistency. This can cause a
problem if this value is changed between the two fetches
under a race condition.

To demonstrate how the problem is caused by this
double-fetch bug, we tracked the tainted value during the
propagation and demonstrated how it is used. At line 205 of
Fig. 11, the tainted value handle is used as a parameter to
function do_handle_to_path(). Then, within this
function, as Fig. 12 shows, the taint propagates to
handle_dwords (line 150), and then handle_dwords

is used as a parameter in the invocation of function
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exportfs_decode_fh() (line 152). Within this
function in file expfs.c, the tainted value fh_len is used
both at line 426 and line 480, which are passed as
parameters both to function fh_to_dentry() and
fh_to_parent(). We then tracked the implementation
of these two functions in file export.c and found that the
tainted value fh_len is used for the verification of the
struct length (line 243 and line 257). Malicious modification
of this value will disrupt the verification here, causing an
invalid message skip the check and be processed by the
kernel as a normal one. Serious consequences such as over
boundary access and buffer overflow will be caused.

6.2 Exploitation

A double-fetch bug can turn into a double-fetch
vulnerability if the consequence is exploitable. As shown in
Fig. 1, the exploitation works by changing the user data from
a concurrently running user thread. This malicious user
thread should be running in the same address space with the
user thread that invokes the kernel function. Otherwise, it
would be infeasible to rewrite the user data due to the
address space isolation. This malicious thread should start
right after the first fetch, continuously rewriting the specific
memory location within the time window between the first
and second fetches. Tricks such as using page boundary,
disabling page cacheability, and translation lookaside buffers
(TLB) flushing could significantly expand the time window
between the two kernel reads to increase the success rate of
changing the data [13]. The most critical part of the
exploitation is finding the right memory location to rewrite
the data. If a value that controls a loop or a copy length is
changed, serious consequences such as buffer overflow,
information leakage, and kernel crash would occur.

6.3 Double-Fetch Bug Prevention

Based on our study and analysis, we propose some advice on
preventing double-fetch bugs.

1. Use the same value. A double-fetch situation turns into
a bug when there is a use of the “same” data from both
fetch operations, because a (malicious) user can change
the data between the two fetches. If the developers only
use the data from one of the fetches, problems can be
avoided.

2. Overwrite data. There may be a double-fetch situation
in which the first recommendation cannot be applied to
resolve the situation, and some data need to be fetched

and used twice. One way to resolve the situation is to
overwrite the data from the second fetch with the data
that have been fetched first. Even if a malicious user
changed the data between the two fetches, the change
would have no impact.

3. Compare data. Another way to resolve a double-fetch
situation is not to overwrite the data, but to compare the
data from the first fetch with the data of the second fetch.
If the data are not the same, the operation can be aborted
safely. In this situation, a double fetch is not avoided, but
an attack can be identified.

4. Synchronization approach. The last way to prevent a
double-fetch bug is using synchronization approaches
to keep the atomicity of the inseparable operations,
such as locks or critical sections. As long as we
guarantee that the fetched value cannot be changed
between the two fetches, then no problems will arise.
Even though synchronizations could prevent potential
race conditions, this approach will inevitably cause
performance degradation for the kernel.

6.4 Limitations

Even though DFTracker can effectively find double-fetch
bugs, as an innovative prototype, it still has some limitations.
For example, DFTracker can only detect double-fetch bugs
in C/C++ programs with open source code. For the patterns
we proposed, we currently do not consider the situations that
the second kernel read and the use of the fetched value is not
explicitly guarded by a branch, because in this situation, the
branch controlled by the first kernel read does not affect the
execution of the second kernel read, and the use of the
second fetched value is not based on the check of the first
fetched value. Therefore, most of the cases in this situation
are not causing a double-fetch bug. However, this decision
could miss situations where the branch jumps to the
error-handling code or just returns, which could affect the
execution of the second kernel read, causing a double-fetch
bug. This could cause false negatives and should be tackled
in future work. In addition, as we mentioned in Section 5.1,
multiple uses of the tainted variable in a same double-fetch
case will result in duplicate reports, which should be
eliminated in future work.

7 Related Work

A double-fetch bug is a type of special race condition
between the kernel and the user space. To date, little work
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has been conducted on double-fetch bugs owing to their
uncertainty in appearance and difficulty in digging from the
kernel.

The Bochspwn project [13] is the only systematic work
on double-fetch bugs presented so far, and was the first to
formally detect it. Their research has been significant in
finding double-fetch bugs based on memory access pattern.
However, there still could be some improvements in
accuracy and efficiency, such as eliminating the false
positives and false negatives. Their work was conducted on
a Windows platform with a dynamic approach, and our work
is performed on a Linux platform with a static approach,
which complements their work well. To the best of the
authors’ knowledge, the work presented in this paper is the
first to detect double-fetch bugs with a static approach, and
the static approach can detect bugs without actual
executions, which is much faster than dynamic approaches.
Besides, the static approach has better path coverage.

Yang’s work [28] is very relevant to ours. They focused
on concurrency bugs in a TOCTOU situation, and they
believed such bugs could be exploited to carry out
concurrency attacks. They also studied some real cases to
catalog concurrency attacks and pointed out that the risk of
concurrency attacks is proportional to the duration of the
vulnerability window. However, they did not propose an
actual solution of how to find or prevent such bugs, except
for some implications.

DataCollider [34] is a lightweight tool that detects data
races in kernel modules. To reduce the runtime overhead,
DataCollider randomly samples a small percentage of
memory accesses as candidates for data-race detection. It
uses breakpoint facilities already supported by hardware
architectures to lower the runtime overhead, and it is also
oblivious to the synchronization protocols. However, it only
concentrates on the races happening within the kernels. As a
type of dynamic approach, it has to run the program multiple
times to improve the path coverage as well as trigger the
bug. In addition, even though the sampling technique in
DataCollider lowers the runtime overhead, it reduces the
chances of finding a bug.

SKI [35] also detects concurrency bugs in the kernel. It
explores the kernel interleaving space in a systematic way by
taking full control over the kernel thread interleavings. To
control the thread interleavings without modifying the kernel
code, SKI uses an adapted virtual machine monitor that
determines the status of the various threads of execution and
selectively blocks a subset of these threads to enforce the
desired schedule. However, a dynamic approach that

involves thread interleavings will inevitably cause false
negatives. In addition, runtime overhead will increase
dramatically as the threads increase.

Engler et al. used both static analysis and software model
checking [36] to find software errors [37]. ARCHER [38] is
a static memory access checker that uses path-sensitive,
inter-procedural symbolic analysis to bound the values of
both variables and memory sizes. It evaluates known values
using a constraint solver at every array access, pointer
dereference, or call to a function that expects a size
parameter. Accesses that violate constraints are flagged as
errors. This checker used a similar technique to our
approach except that its checking is not specific to the
double-fetch bug. RacerX [20] is a static tool that uses
flow-sensitive, inter-procedural analysis to detect both race
conditions and deadlocks. It uses novel techniques to
counter the impact of analysis mistakes, and tracks a set of
code features that it uses to sort errors from most to least
severe. However, this tool does not involve the special
situation of racing between the kernel and user. In addition,
they invented extensible languages for program analysis.

8 Conclusion

In this work, we focused on detecting double-fetch bugs
between the kernel and the user space. We proposed an
innovative approach of multi-taint parallel tracking. To the
best of our knowledge, we are the first to introduce
multiple-taint parallel tracking into double-fetch bug
detection. There are two phases in our proposed approach.
First, a quick scan on the AST is conducted to collect source
code information, which includes the branch and function
information. Then, a path-sensitive symbolic execution is
followed to explore all the paths to detect double-fetch bugs
based on our proposed patterns. We implemented a
prototype called DFTracker based on our proposed
approach, and its viability was proved by our experiments.
All the double-fetch bugs in the test suite were detected with
minor false positives and no false negatives. We tested
DFTracker on the whole Linux kernel and found a new
double-fetch bug. The average overhead of DFTracker is 2x
for single files and 9x for the entire Linux kernel test, which
is acceptable.

Our proposed approach provides a new perspective for
double-fetch bug detection—specific to double-fetch bug
features and has better path coverage and lower runtime
overhead—which is more suitable for in-house testing
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before the software release. In future work, we will try to
improve the performance by combining our work with
techniques such as program slicing [39] and parallel
execution [12].
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