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Abstract The double fetch problem occurs when the data is maliciously changed between two kernel reads of the

supposedly same data, which can cause serious security problems in the kernel. Previous research focused on the double

fetches between the kernel and user applications. In this paper, we present the first dedicated study of the double fetch

problem between the kernel and peripheral devices (aka. the hardware double fetch). Operating systems communicate with

peripheral devices by reading from and writing to the device mapped I/O (input and output) memory. Owing to the lack of

effective validation of the attached hardware, compromised hardware could flip the data between two reads of the same I/O

memory address, causing a double fetch problem. We propose a static pattern-matching approach to identify the hardware

double fetches from the Linux kernel. Our approach can analyze the entire kernel without relying on the corresponding

hardware. The results are categorized and each category is analyzed using case studies to discuss the possibility of causing

bugs. We also find four previously unknown double-fetch vulnerabilities, which have been confirmed and fixed after reporting

them to the maintainers.
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1 Introduction

Hardware is the fundamental component of a com-

puter system. The software works based on the func-

tioning of the underlying hardware, which provides the

basic computing, data transmission, and interaction

with users. Therefore, hardware has the “privilege”

that can access and manipulate data prior to the soft-

ware. However, “with great power comes great respon-

sibility,” the reliability of hardware has always been a

critical issue to the computer security.

The newly emerged hardware-based attacks in re-

cent years have placed attention on hardware and pe-

ripheral devices. One of the most successful hardware-

based attacks is conducted on the USB (universal se-

rial bus) device, which includes most of the computer

peripherals, such as disk drives, keyboards, and came-

ras. These attacks are facilitated by the fact that USB-

based devices can operate by plugging without a sys-

tem restart. For example, the USB autoplay attack[1]

enables attackers to run executables by simply plugging

a compromised USB device in the computer. Moreover,

the trend of IoT (Internet of Things) makes hardware

security more important. Billions of everyday objects 1○

such as vehicles, electronic devices, embedded sensors,

and other physical hardware are connected to the Inter-

net, and security failures of these endpoints can cause

immediate risks of privacy, savings, well-being, or even

lives.
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The risks are not only in what the devices carry but

also built into the core of how they work. In Black-

hat 2014, a newly emerged approach called BadUSB 2○

performed attacks by writing malicious code onto USB

control chips (also known as firmware) used in thumb

drives and smartphones. Anti-virus programs are only

designed to scan for software written onto the memory

rather than the firmware, and thus, they are unable to

detect the infection 3○. With such compromised hard-

ware, an attacker could completely take over a PC (per-

sonal computer), invisibly alter files installed from the

memory stick, or redirect the user’s Internet traffic, all

without being detected 4○.

The underlying issue is the inability to guarantee

and verify the functionality and integrity of the con-

nected devices. The operating system verifies a device

through the code on the device 5○; however, in practice,

the operating system is unable to ascertain whether a

device is normal or compromised since the device might

be controlled and reprogramed. When a compromised

device is connected to the computer, the driver, which

is usually designed without considering the risks posed

by compromised devices, is unable to notice the diffe-

rence. Therefore, malicious data crafted by an attacker

can disrupt the kernel via such compromised devices

and cause security-related problems, including the dou-

ble fetch problem.

A double fetch problem is a data inconsistency prob-

lem caused by an unexpected data change between two

kernel reads of the supposedly same data. When the

kernel reads twice the data from the same location, usu-

ally the first read is to verify the data and the second

read is to use it, under the assumption that the data is

unchanged. However, when this assumption is violated

by an unexpected data change, problems such as buffer

overflows, information leakage, and kernel crashes[2] can

be caused in the kernel. Previous work[3-5] only focus

on the double fetch problem between the kernel and

the user processes, in which the data is changed by

a concurrently running user thread under race condi-

tions. However, a double fetch problem can also oc-

cur in the I/O memory between the kernel and the

peripheral devices (aka., the hardware double fetch).

The operating system controls a peripheral device via

writing and reading of its registers. When the commu-

nication adopts the memory-mapped I/O, reading from

and writing to the I/O memory work in exactly the

same way when accessing the regular memory. Since

the data in the I/O memory is mapped from the exter-

nal devices, when a compromised device is connected

and performs malicious data changes between the two

kernel reads of the same I/O memory data, a hardware

double fetch problem occurs.

In this paper, we present a dedicated study on the

hardware double fetch problem. Using a static pattern-

matching approach, we conduct an investigation on the

Linux kernel with the aim of addressing the following

questions. “How is peripheral data used by the ker-

nel?” “Do hardware double fetches really cause prob-

lems?” “In what ways do the kernel fetches cause a

hardware double fetch?” “What are the consequences

of hardware double fetches?” In summary, we make the

following contributions.

•We present the first study (to the best of our know-

ledge) on the hardware double fetch problem, which

provides a new perspective to the double fetch prob-

lem by increasing the scope to include the peripheral

devices.

• We devise a tool based on static pattern-matching

to find hardware double fetches in the Linux kernel. It

can analyze all the driver code in one execution without

relying on the corresponding hardware. We have made

it publicly available online for future research.

• We identify 361 occurrences of hardware double

fetches from Linux kernel 4.10.1, including four pre-

viously unknown double-fetch vulnerabilities. We re-

port the vulnerabilities to the maintainers and provide

patches for them. All of the vulnerabilities have been

confirmed and fixed as a result of our report.

• We conduct a thorough investigation of the cases

we identify. The cases are categorized by patterns and

each category is analyzed with examples to discuss the

possibility of causing bugs. We also summarize findings

based on our investigation.

The rest of the paper is organized as follows. Sec-

tion 2 presents relevant background on the I/O memory

in Linux and the double fetch problem. Section 3 in-

troduces the static pattern-matching approach we pro-

2○Karsten N, Jakob L. BadUSB — On accessories that turn evil. https://pacsec.jp/psj14/PSJ2014 Karsten Nohl 141112.BadUSB-
Pacsec.KN01.pdf, Feb. 2018.

3○Finkle J. Hackers can tap USB devices in new attacks. http://www.reuters.com/article/us-cybersecurity-usb-attack-
idUSKBN0G00K420140731, Feb. 2018.

4○Greenberg A. Why the security of USB is fundamentally broken. https://www.wired.com/2014/07/usb-security/, Feb. 2018.
5○Paganini P. How to transform USB sticks into undetectable malicious devices. http://securityaffairs.co/wordpress/28855/-

hacking/usb-attack-code-released.html, Feb. 2018.
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pose and presents the results we obtain. Section 4

presents the analysis of the results, which is based on

the case study of different categories. Section 5 dis-

cusses the findings, the evaluations of our approach, and

the strategies on preventing hardware double fetches.

Section 6 is related work, followed by conclusions in

Section 7.

2 Background

We provide readers with a reminder of how data is

exchanged between the operating system and the pe-

ripheral devices in Linux, how drivers work to bridge

the hardware and the software, and how double fetch

problems happen.

2.1 Memory-Mapped I/O vs Port-Mapped
I/O

Every peripheral device is controlled by writing to

and reading from its registers. Most of the time, a de-

vice has several registers, and they are accessed at con-

secutive addresses, either in the memory address space

or in the I/O address space 6○. Microprocessors from

the system normally use two complementary methods

to connect peripheral devices: memory-mapped I/O

and port-mapped I/O.

Memory-mapped I/O (MMIO) uses the same ad-

dress space to address both the physical memory and

the I/O devices, and the areas of the addresses used by

the CPU (central processing unit) must be reserved for

I/O. The CPU uses the same instructions used to ac-

cess the physical memory to access device registers and

device memory. Each I/O device monitors the CPU’s

address bus and responds to any CPU access of an ad-

dress assigned to that device, connecting the data bus

to the desired device’s hardware register 7○.

Port-mapped I/O (PMIO) is also called the isolated

I/O. It uses a separate, dedicated address space (ac-

complished by an extra “I/O” pin on the CPU or an

entire bus dedicated to I/O) and is accessed via a set

of CPU instructions designed for performing I/O, such

as the in and out instructions (e.g., inb, outb, inw,

and outw) on the x86 and x86-64 architectures, which

copy bytes between the EAX register and a specified

I/O port assigned to the I/O device 7○.

MMIO uses regular instructions to access physi-

cal memory as well as to manipulate an I/O device,

which allows a CPU discarding the extra complexity

that PMIO brings and requires less internal logic than

PMIO. Thus it is cheaper, faster, and easier to build,

consumes less power, and can be physically smaller. Be-

sides, all the CPU’s addressing modes are available for

the I/O and the memory. Instructions that perform

an ALU (arithmetic logic unit) operation directly on a

memory operand can be used with I/O device registers

as well 7○.

PMIO instructions need dedicated instructions to

access I/O devices, which are often very limited and

provided only for simple load-and-store operations be-

tween CPU registers and I/O ports 7○. However, PMIO

needs less logic than MMIO to decode a discrete ad-

dress; thus it costs less to add hardware devices to a

machine, whereas MMIO must fully decode the entire

address bus for every device 8○. Besides, the I/O ope-

rations can slow memory access as the address and data

buses are shared. This is because the peripheral device

is usually much slower than the main memory 7○.

Although the use of PMIO is common for ISA (in-

struction set architecture) peripheral boards 6○, most

PCI (peripheral component interconnect) devices, es-

pecially in x86-based architectures, prefer MMIO be-

cause the instructions that perform PMIO are limited

to only one register (EAX) 7○. Besides, advantages such

as the independence on special-purpose processor in-

structions, the high CPU efficiency on memory access,

and the freedom of compiler in register allocation and

addressing-mode selection when accessing memory 6○,

all make MMIO preferable in the communication be-

tween modern peripheral devices and the CPU.

Both memory-mapped registers and memory-

mapped device memory are called I/O memory because

the difference between registers and memory from pe-

ripheral devices is transparent to software 9○. Device

memory plays a significant role in exchanging large

blocks of data, such as video data and Ethernet packets,

but device registers have more complex functionalities,

which are generally divided into three types.

• Status registers provide status information of the

device to the CPU. These registers are often read-only.

• Configuration/control registers are used by the

6○I/O ports and I/O memory. http://www.makelinux.net/ldd3/chp-9-sect-1, Feb. 2018.
7○Memory-mapped I/O. https://en.wikipedia.org/wiki/Memory-mapped I/O, Feb. 2018.
8○MEMORY-MAPPED I/O VS PORT-MAPPED I/O. http://www.bogotobogo.com/Embedded/memory mapped io vs port-

mapped isolated io.php, Feb. 2018.
9○Using I/O memory. http://www.makelinux.net/ldd3/chp-9-sect-4, Feb. 2018.



590 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

CPU to configure and control the device. Most bits

in control registers can be both read and written.

• Data registers are used to read data from or send

data to the I/O device. They can be both read and

written.

In some instances, a given register may fit more than

one of the above categories, e.g., some bits are used for

configuration while other bits in the same register pro-

vide status information 10○.

One distinctive feature of the I/O memory is that

the data mapped in the I/O memory can be changed by

the peripheral device. For example, the data in a status

register changes with the running status of the device,

and the data in a data register can be modified by the

device as well. Thus, the I/O memory is different from

the regular memory, though both being accessed in a

similar fashion. The data that resides in the regular

memory does not change unless an abnormal situation

occurs, such as a race condition (the traditional dou-

ble fetch). However, in the I/O memory, it is normal

that the data changes with the running of the mapped

device, making it complicated to identify the hardware

double fetches.

Therefore, identifying hardware double fetches from

the I/O memory and analyzing the possibility of

causing bugs should take I/O memory characteristics

(e.g., the data comes from different peripheral sources,

mapped data changes with the hardware) into conside-

ration.

2.2 Memory Access in Drivers

Device drivers are critical kernel-level programs that

bridge the hardware and the software by providing in-

terfaces between the operating system and the attached

devices. Drivers are a large part of current operating

systems, e.g., 44% of the Linux source files belong to

drivers. However, device drivers are also found to be

particularly bug-prone kernel components. According

to an empirical study by Chou et al.[6], the error rate

in device drivers is about 10 times higher than that in

any other parts of the kernel. Ten years later, Palix

et al. replayed Chou et al.’s experiment on new Linux

versions and found that drivers still have the largest

number of faults in absolute terms[7]. Swift et al.[8]

also found that 85% of system crashes in Windows XP

can be blamed on driver errors.

Device drivers are responsible for enabling the ker-

nel to communicate with and make use of the de-

vices connected to the system. For example, in

the case of memory-mapped I/O communication, I/O

memory regions must be allocated prior to use (e.g.,

request_mem_region() in Linux). Then the I/O mem-

ory should be made accessible to the kernel by setting

up the mapping, which is done by ioremap() to assign

virtual addresses to I/O memory regions. Finally, the

I/O memory is accessed via a set of wrapper functions

(e.g., ioread8()) which are optimized and safe to con-

duct the read and write operations. All the above ope-

rations are done in the driver. However, a major prob-

lem of the drivers in this procedure is the inability to

validate the devices attached to the system. A driver is

usually designed to identify the corresponding device by

reading the code from the device, which is a rather sim-

ple scheme that cannot be used to effectively distinguish

a compromised device. A compromised and controlled

device could pass the check (if any) at the beginning

but perform destructive activities afterward; however,

the driver processes it as normal without considering

the risk posed by it.

The widely-adopted dynamic approaches in pro-

gram analysis and bug detection are based on the

execution of the program. Since the execution of

driver code relies on the functioning of the undertaking

hardware, dynamically detecting the hardware double

fetches is unworkable if the corresponding hardware is

absent. Moreover, the Linux kernel now supports 23

hardware architectures[7], and it is infeasible to have all

the hardware (architectures) at one time to give a tho-

rough analysis of the whole kernel including all drivers.

Therefore, the dynamic analysis used by the prior dou-

ble fetch research[3-4] is not a viable approach for a

thorough analysis of the hardware double fetches. We

propose a static pattern-matching approach to identify

hardware double fetches in the Linux kernel including

the complete space of drivers.

2.3 Traditional Double Fetch

Generally, a double fetch occurs in the memory ac-

cesses between the kernel and the user space. This

term was first introduced by Serna 11○. Jurczyk and

Coldwind[3] presented the first approach on double

fetch detection based on dynamically memory access

10○Memory-mapped I/O. http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch14s03.html, Feb. 2018.
11○Serna F J. MS08-061: The case of the kernel mode double-fetch. https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-

061-the-case-of-the-kernel-mode-double-fetch/, Feb. 2018.
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tracing, known as the Bochspwn project. Technically,

a double fetch takes place within a kernel function, such

as a syscall, which is invoked by a user application from

user space. As illustrated in Fig.1, the kernel function

fetches a value twice from the same memory location

in the user space. The first time is to verify it and

the second time is to use it. Meanwhile, within the

time window between the two kernel fetches, a concur-

rently running user thread changes the value under a

race condition. Then, when the kernel function fetches

the value a second time to use, it gets a different value,

which may not only cause a difference in computation

but also cause consequences such as buffer overflows,

information leakage, and privilege escalations[2].

The double fetch problem is similar to the TOCT-

TOU (time-of-check to time-of-use)[9] issue which is

also caused by changes between the check of a condi-

tion and the use of the result of that check (by which

the condition no longer holds). However, a double fetch

is different from a typical TOCTTOU issue because a

double fetch focuses on the interaction across a system

“boundary”, such as across the kernel and user space,

whereas a TOCTTOU usually occurs within the same

domain. In addition, a TOCTTOU is often specific to

a shared object (e.g., a file or a socket)[10-15].

In order to make a clear distinction with the hard-

ware double fetch problem we propose, in this paper,

we use term traditional double fetch to describe the

double fetches occur between the kernel and the user

space. We use term double fetch to represent both the

traditional double fetch and the hardware double fetch.

2.4 Hardware Double Fetch

The double fetch problem is essentially a data incon-

sistency problem that disrupts the kernel, which is not

necessarily caused by race conditions in multithreading.

Another possibility is by the change of the peripheral

data in the I/O memory, namely, a hardware double

fetch.

As Fig.2 shows, a hardware double fetch occurs

when the kernel controls a peripheral device by reading

from and writing to its registers or accessing the device

memory data via the memory-mapped I/O. The kernel

reads the “same” I/O memory data twice, assuming the

data is unchanged. However, since the driver is unable

to fully validate the attached device, the compromised

Kernel 
Function

Switch the Value

Memory Data

First Fetch 
to Verify

Racing Thread

Second Fetch 
to Use

Kernel Space

Time Window

User Space

User Thread

Fig.1. Illustration of how the traditional double fetch occurs.
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Device
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Mapped I/O
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Data in the 

I/O Memory

First Fetch 
to Verify

Second Fetch 
to Use

Kernel 

Peripheral 
Device

Time Window

Unexpected 

Data Change

from the Device

Fig.2. Illustration of how the hardware double fetch occurs.
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hardware could tamper the peripheral data mapped in

the I/O memory between the two reads, causing the

data inconsistency for the kernel use, which may lead

to serious problems for the kernel functioning or even a

security vulnerability.

A hardware double fetch is similar to a traditional

double fetch because the data in both cases is assumed

unchanged by the kernel, while it could have been

changed by a malicious operation under certain situa-

tions. Nevertheless, a hardware double fetch is different

from a traditional double fetch in the following aspects.

1) The occurrence crosses different system bound-

aries. A traditional double fetch occurs between the

kernel and the user space, whereas a hardware dou-

ble fetch occurs between the kernel and the peripheral

devices. The involvement of hardware makes the hard-

ware double fetch a complicated problem that no dedi-

cated research was conducted on before.

2) The root cause is different. In a traditional dou-

ble fetch, the kernel fetches data from user space and

the data is modified by the user thread under race con-

ditions. But in the hardware double fetch, the kernel

fetches the data from the I/O memory mapped from

the peripheral hardware and the data is modified by

the peripheral hardware.

3) The peripheral data is inconstant. As discussed

in Subsection 2.1, the peripheral data mapped in the

I/O memory changes with the running status of the de-

vice, which is different from the regular memory whose

data does not change. This makes it difficult to identify

a hardware double fetch by dynamically checking the

fetched value, because even though we find that two

kernel fetches get different values from the same I/O

memory location, we cannot tell whether the difference

is caused by the normal hardware change or abnormal

data tamper.

4) Previous approaches are not workable. As dis-

cussed in Subsection 2.2, the involvement of the hard-

ware makes the dynamic approaches[3-4] that were used

in the prior traditional double fetch research not vi-

able for the hardware double fetches. Since dynamic

approaches rely on corresponding hardware to execute

the program, it is infeasible to have all the hardware

and architectures at one time to conduct a thorough

analysis of the entire kernel (including all the drivers).

Therefore, we present this dedicated study to the

hardware double fetch problem, aiming to raise its

awareness. For the avoidance of ambiguity, we use the

term hardware double fetch or the hardware double-

fetch situation to represent the situation that the ker-

nel fetches the supposedly same data twice from the

I/O memory, which is not necessarily buggy. We use

the term buggy hardware double fetch or the hardware

double-fetch bug to represent the situation that can ac-

tually cause buggy results.

3 Static Pattern-Matching

In this section, we provide details of our static

pattern-matching approach and describe how we iden-

tify the hardware double fetches from the Linux kernel.

3.1 Overview

We develop a static pattern-matching approach,

which can effectively identify the hardware double

fetches from the complete Linux kernel. As Fig.3 shows,

our approach works directly on the source code of the

Linux kernel, and the whole procedure is divided into

four stages.

1) Identify. The double fetch problem has a clear

pattern that the kernel reads from the same memory

address twice in the same context. For a hardware

double fetch, it is similar except that the kernel reads

peripheral data from the I/O memory. In Linux, read-

ing from and writing to the I/O memory are undertaken

by dedicated wrapper functions (listed in Table 1), and

these functions are the only way to access the periph-

eral data in the I/O memory. Therefore, we identify

the consecutive invocations of wrapper functions read

the data from the same I/O memory address. We keep

source files that match this pattern and abandon the

rest.

2) Switch. Since there are dozens of wrapper func-

tions provided by the kernel (as listed in Table 1)

to read from and write to the I/O memory, a hard-

ware double fetch could involve any of them. If we

take all of these wrapper functions into considera-

tion, there would be hundreds of combinatorial situa-

tions to match, which is unworkable. Therefore, we

adopt a unified method by using one function to rep-

resent the similar wrapper functions, which facilitates

the matching without affecting the result. We use

read_wrapper() to replace the wrapper functions in

rows No.1∼No.4 in Table 1, use write_wrapper()

to replace wrapper functions in rows No.5∼No.8, use

block_read_wrapper() to replace wrapper functions

in row No.9, and use block_write_wrapper() to re-

place wrapper functions in row No.10. This switch dra-

matically reduces the situations we need to consider.
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Source 
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Files
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the Two Reads

2. No Pointer Change

3. Pointer Aliasing

Switch and Unify the 

Wrapper Names

Switch Refine Prune

1. Remove Linear Reads

2. Remove Single-Used Reads

3. Remove Unused Reads

Fig.3. Overview of the static pattern-matching approach.

Table 1. Wrapper Functions in the Linux Kernel

No. Wrapper Functions to Access I/O Memory Description

1 ioread8(s), readb(s), __raw_readb(s) Read 8 bits (1 byte) from s

2 ioread16(s), readw(s), __raw_readw(s) Read 16 bits (1 word) from s

3 ioread32(s), readl(s), __raw_readl(s) Read 32 bits (1 dword) from s

4 ioread64(s), readq(s), __raw_readq(s) Read 64 bits (1 qword) from s

5 iowrite8(v,d), writeb(v,d), __raw_writeb(v,d) Write 8 bits (1 byte) v to d

6 iowrite16(v,d), writew(v,d), __raw_writew(v,d) Write 16 bits (1 word) v to d

7 iowrite32(v,d), writel(v,d), __raw_writel(v,d) Write 32 bits (1 dword) v to d

8 iowrite64(v,d), writeq(v,d), __raw_writeq(v,d) Write 64 bits (1 qword) v to d

9 ioread8_rep(d,s,c), ioread16_rep(d,s,c), ioread32_rep(d,s,c),
ioread64_rep(d,s,c), memcpy_fromio(d,s,c)

Repetitively read v (byte, word, dword, qword)
from s to d

10 iowrite8_rep(d,s,c), iowrite16_rep(d,s,c), iowrite32_rep(d,s,c),
iowrite64_rep(d,s,c), memcpy_toio(d,s,c)

Repetitively write v (byte, word, dword,
qword) from s to d

3) Refine. In this stage, we consider the following

factors that affect the occurrences of hardware double

fetches.

• No Writes Between Two Reads. In a hardware

double fetch, we match the pattern that the kernel reads

data from the same address twice, which implies the

kernel fetches the same data, i.e., there is the depen-

dence between the two fetches. Therefore, the double-

fetched data should not be overwritten by the kernel

itself because an additional write will violate the de-

pendence between the two fetches, making the kernel

not double-fetch the same data.

• Pointer Aliasing. A hardware double fetch reads

data from the same memory location but not necessa-

rily uses the same pointer. Sometimes the kernel checks

the data via one pointer but uses the data via another

pointer. This is more convenient because the original

pointer might have been changed in the first read (e.g.,

processing long messages section by section in a loop).

We currently only consider situations with one aliasing

pointer (aka. only one pointer assignment occurs either

before the first read or between the two reads), which

covers most of the cases in the double-fetch problem.

• Pointer Change. Even if a hardware double fetch

uses the same pointer to fetch data, the pointer is not

guaranteed always pointing to the same address because

the pointer can be changed between the two fetches.

For example, by adding an offset, by self-increment (i.e.,

ptr++), or by being assigned to a new value, all of

these situations will change the pointer. Besides, it is

also possible that only a part of the pointer expression is

changed, making the address of the pointer also change.



594 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

We take such potential pointer changes into considera-

tion to make sure that a hardware double fetch reads

from the same address.

4) Prune. As a static approach, our approach ine-

vitably introduces false positives, and we try to elimi-

nate them at this stage. We remove the following situa-

tions that can cause false reports.

• Linear Reads. In some situations, the data trans-

mission is limited by the register bit width of the pe-

ripheral device; thus, a value has to be sent separately

by linear reads and then linked together. For example,

when a 16-bit value is read by the CPU via an 8-bit regi-

ster, from the view of the code, there will be two reads

from the same address. However, the two reads are in

fact fetching different data: one read gets the lower 8

bits and the other gets the higher 8 bits. Then the two

parts are linked by bit or (i.e., |). Thus, the linear

reads situation fetches from the same address but gets

different sections of the data. This situation should be

removed because the whole data is only fetched once.

• Not Double Used. A similar situation reads twice

the same data from the I/O memory but each time

only keeps a part of it. For example, the first read

gets the lower 8 bits by read_wrapper(src) & 0xff,

while the second read gets the higher 8 bits by

read_wrapper(src) >> 8. This situation should be

removed because each read actually gets a different sec-

tion of the data; thus, no overlapped part is double-

used.

• Unused Reads. In some situations, a read ope-

ration is used to release a signal or to introduce a time

delay. The read value is not really returned or used,

thus, not causing any problem. These cases should also

be removed.

5) Manual Review. After the automatic pattern

matching, we manually review the reports to confirm

the buggy cases. A hardware double-fetch bug satisfies

four conditions.

a) The data fetched from the peripheral hardware

is critical values, such as struct sizes, buffer lengths,

queue pointers, and message sequence numbers. Tam-

pering with such data can lead to severe consequences.

b) The kernel fetches the peripheral data twice from

the I/O memory, which gives attackers the chance to

tamper the data between the two fetches.

c) The kernel uses the data from both of the two

fetches, and thus the data inconsistency can affect the

kernel.

d) No additional validation exists after the second

fetch; otherwise, tampering with the data can be pre-

vented. No infeasible cases exist in the double-fetch

situations, such as pointer changes.

The pattern-matching phase in our approach au-

tomatically identifies hardware double-fetch situations

that satisfy conditions b) and d). Afterwards, we manu-

ally review the reported cases to find the vulnerabilities

that also match conditions a) and c). Finally, we report

the potential vulnerabilities to the kernel maintainers

who make the final confirmation.

Our tool can help to locate the potential hardware

double fetches from thousands of source files and re-

move the infeasible cases. However, the use of the data

in the double-fetch problem is complicated. Devising a

tool to automatically and accurately track where and

how the fetched data is used and gets the same results

would cost much more time than our current tool with

manual efforts.

3.2 Implementation

Our tool is implemented based on Coccinelle[16],

which is a program matching and transformation en-

gine that provides the language SmPL (Semantic Patch

Language) for specifying desired matches and trans-

formations in C code. Since Coccinelle’s strategy for

traversing control-flow graphs is based on temporal

logic CTL (computational tree logic)[17], the pattern-

matching implemented on Coccinelle is path-sensitive,

which achieves better code coverage. Coccinelle is

highly optimized to improve the performance when ex-

haustively traversing all the execution paths. Besides,

Coccinelle is insensitive to newlines, spaces, and com-

ments, which achieves better precision. Moreover, the

pattern-based analysis is applied directly to the source

code; therefore, wrappers that are defined as macros

(e.g., __raw_readb()) will not be expanded during the

matching, which facilitates the matching of fetches in

our approach by identifying wrapper functions.

Our implementation is about 2.3 KLOC (thousands

of lines of code), which combines the SmPL script to

match the pattern as well as transforming the wrapper

functions, and the Python script to process the results.

We have made it publicly available 12○, hoping that it is

useful for future study.

12○https://github.com/wpengfei/hardware df, Feb. 2018.
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3.3 Results

We apply our static pattern-matching approach to

the Linux kernel of version 4.10.1, which was the newest

version when the experiment was conducted. After the

automatic pattern-matching, we get 178 candidate files

out of 42 417 source files (.c or .h files) from the Linux

kernel, including 361 hardware double fetches. Then

we manually review these files and divide them into five

categories according to the types of the I/O memory.

As Table 2 shows, status register checking accounts

for most of the hardware double fetches we identify

(65.9%), which includes four typical patterns. The

common check is a situation that multiple conditional

checks of the same variable are used one after another,

which has 59 occurrences. The loop check situation

uses a loop to constantly check the register value, which

has 81 occurrences. The wait check situation uses wait

functions (e.g., udelay()) between the two fetches,

which has 81 occurrences. The stable check situation

compares the values from the two fetches, which has 18

occurrences. All of these situations are likely to turn

buggy once a malicious data change occurs between the

two fetches. However, we do not confirm a currently

buggy case.

Table 2. Results of the Categorized Hardware Double Fetches

Type Pattern Counts Number of

(Percentage) True Bugs

Status Register Common check 59 (16.3) 0

Loop check 80 (22.2) 0

Wait check 81 (22.4) 0

Stable check 18 (5.0) 0

Config Register Configure check 29 (8.0) 0

Data Register Check and use 68 (18.8) 3

Dev. Mem. Block check 1 (0.3) 1

Special Flush write 17 (4.7) 0

Double valid 6 (1.7) 0

Delay 2 (0.6) 0

Total – 361 (100) 4

We identify 29 hardware double fetches from the

configuration registers. They read the registers the first

time to check the value, then read it again to modify the

value, and write it back (the configure check situation).

However, we do not think this can cause a double-fetch

bug because even if the value is changed between the

two fetches, it can hardly harm the kernel except giving

wrong configuration information to the device.

We identify 68 hardware double fetches from the

data registers. They have the same pattern with the

traditional double fetches in which the first fetch is for

check and the second one is for use. Although most of

them are not necessarily buggy as the double-fetched

value is not double-used, we find three buggy cases

(which will be discussed in Section 4).

We only find one hardware double fetch in the de-

vice memory. Since the device memory is usually used

to exchange large blocks of data, developers usually try

to avoid double-fetching large blocks of data to improve

efficiency. However, this one has been confirmed as a

double-fetch vulnerability (which will be discussed in

Section 4).

Finally, we also find some hardware double-fetch sit-

uations that happen due to the hardware-specific fea-

tures. For example, some hardware needs an extra read

to flush the write down to the hardware (the flush write

situation), some hardware requires to be read twice to

get the valid value (the double valid situation), and

some hardware needs an extra read to delay the real

read, while the fetched value of the extra read is use-

less (the delay situation). These occurrences of double

fetches are not likely to cause buggy situations because

the data is not double-used.

4 Analysis of Hardware Double Fetches

In this section, we discuss the hardware double

fetches we identify. We also describe how they occur

in the I/O memory as well as the possibility of causing

bugs (and vulnerabilities).

4.1 Status Registers

Status registers indicate the working status of a pe-

ripheral device; thus the data in status registers changes

with the running of the device. During the communi-

cation, the kernel usually checks these registers before

each operation to make sure that the device is in the

right status, so as to take a right step based on the cur-

rent status. Therefore, these consecutive reads to the

status registers introduce double-fetch situations.

Fig.4 shows a code snippet from file

drivers/parport/parport_ip32.c in Linux 4.10.1,

which illustrates a typical situation we call as the

common check. Before each step, priv->regs.ecr

is fetched and checked (lines 1900, 1929, and 1933),

and only when the fetched data satisfies the condition,

the program proceeds. However, problems occur if de-

pendence exists among these checks. For example, if

one check relies on a previous check and it is assumed

that the check still holds while the previous one is not

valid anymore due to malicious data changes from the

hardware, then unexpected results will be caused.

XXW
高亮
标黄的是需要对齐的项目

XXW
高亮
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Fig.4. Common check situation in the status registers.

Another typical use of the status register is when

the kernel waits for a certain status by constantly

checking it in a loop, which we call as the loop

check. Fig.5 is a code snippet of such a case from

file drivers/tty/moxa.c in Linux 4.10.1. The ker-

nel waits baseAddr + Magic_no for the desired value

Magic_code, and checks it in a loop with an interval

of 10 ms. This consecutive checking of the same ad-

dress introduces double-fetch situations. Similar situ-

ations also happen with the while loop, do...while

loop, and wait functions such as udelay(), ndelay(),

mdelay(), and cpu_relax(). Malicious data changes

performed by the compromised hardware could disrupt

the check, leading to unexpected results.

Fig.5. Loop check situation in the status registers.

Fig.6 shows a code snippet from file

drivers/clocksource/jcore-pit.c in Linux 4.10.1,

which illustrates a situation we call as the stable check.

In this case, the newly fetched data is used to compare

with the previously fetched data in a loop until it is

equal to one another. This is often used in time-related

situations that the data needs to be validated until it

is stable.

Fig.6. Stable check situation in the status registers.

In summary, the common check situation usually

reads status register data for conditional checks one af-

ter another. If dependent relations exist among the

checks, problems will occur because a previously satis-

fied condition may have been violated due to an unex-

pected data change in the registers. For the loop check

situation, the use of wait functions expands the time

window between the two fetches, which increases the

possibility of successfully tampering with the register

data. As for the stable check situation, it cannot gua-

rantee the data is stable after the check. Thus, although

the hardware double fetches we identify from status

registers are not necessarily buggy, they are prone to

turning into bugs, once an unexpected data change dis-

rupt the checking.

4.2 Configuration Registers

Configuration (control) registers store the configu-

ration information for the peripheral devices, which

directs the working of the devices. Hardware double

fetches can be introduced when the driver reads and

modifies the information in the control registers.

Fig.7 is from file /drivers/char/hpet.c in Linux

4.10.1, which shows a typical situation of how a con-

figuration register is double fetched, and we call it

the configure check. Generally, when the driver wants

to modify a configuration register, it usually reads the

value first to check and make sure whether the device is

in the right status (line 638, line 644). Then the value is

Fig.7. Hardware double fetch in the configuration registers.
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read again (line 645) and modified by changing certain

bits (e.g., by |, &, and ^). Finally, the modified value

is written back to the register (line 47). However, we

think this situation is unlikely to cause a double-fetch

bug because even if the value is changed between the

two fetches, it can hardly harm the kernel except giving

wrong configuration information to the device.

4.3 Data Registers

Data registers play a significant role in the com-

munication with the peripheral devices. For example,

the data generated during the working of the device

is stored in data registers, which are accessible to the

kernel. Messages in the communication are often ex-

changed via data registers (e.g., in the form of com-

mands and responses). Moreover, the data in data reg-

isters is often critical and related to memory access,

such as the variable that indicates the message length,

or the header and tail pointer of a message queue.

When such data is compromised, it is very likely to

cause memory access errors.

Fig.8 shows a typical situation of how the data regi-

ster is double-fetched, which we call as the check and

use. In file /drivers/net/can/pch_can.c of Linux

4.10.1, the driver fetches mcont twice from the data

register, in which the first time (line 661) is to validate

the data (lines 662, 666, 672) and the second time (line

697) is to use the data. Based on the second fetched

mcont, value cf->can_dlc is calculated and used to

control the loop at line 700. Since cf->data[] is de-

fined as an array of length 8, if mcont is unexpectedly

changed to a larger value before the second fetch, an

array over-access would be caused. Fortunately, macro

get_can_dlc() at line 697 prevents this by limiting the

maximum value of cf->can_dlc; thus, it is safe now.

However, during the investigation of the code history,

we find that this secure macro was introduced in a later

patch 13○, and before the patching, this code was once

vulnerable to this double-fetch bug.

Fig.9 shows another case, which is from file

/sound/isa/msnd/msnd_pinnacle.c in Linux 4.10.1.

Here the data register holds the header pointer

chip->DSPQ+JQS_wHead of a message queue, and the

value is fetched twice at line 178 and line 182, respec-

tively. The first time is to prevent queue over-access in

comparison with the tail pointer (the check), whereas

the second time is to get the message data and send it

by snd_msnd_eval_dsp_msg() (the use). This double

fetch here is vulnerable because the pointer is stored

in the peripheral device register, once the value of the

pointer is changed by the device between the check and

the use, and an over-boundary access of the message

queue would be caused. This hardware double fetch

has been confirmed as a vulnerability (CVE-2017-9984)

by the maintainers. Similar cases also include CVE-

2017-9985 in files /sound/isa/msnd/msnd_midi.c and

CVE-2017-9986 in file /sound/oss/msnd_pinnacle.c.

Fig.8. Hardware double fetch in the data register.

Fig.9. Hardware double-fetch vulnerability in the data register.

In addition to the above cases, most of the hard-

ware double fetches we identify from the data registers

are not buggy because the double-fetched values are

not double-used, which is very similar to the traditional

double fetches[5].

13○https://github.com/torvalds/linux/commit/1d5b4b2778e8e40f42ae5d9556777583f3556d81, Feb. 2018.
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4.4 Device Memory

In addition to device registers, device memory is also

mapped and accessible to the kernel. Since device regis-

ters are limited by the bit width, large data blocks (e.g.,

video data and Ethernet packets) are usually exchanged

via mapped device memory for efficiency purpose. The

data exchange is usually conducted by block wrapper

functions (listed in rows No.9 and No.10 of Table 1).

Fig.10(a) shows such a hardware double

fetch in the device memory, which is from

/drivers/media/pci/saa7164/saa7164-bus.c in

Linux 4.10.1. Function saa7164_bus_get() uses

lines 384 and 385 to fetch device memory data from

bus->m_pdwGetRing to local buffer msg_tmp, and then

it uses msg_tmp to do a series of checks with the desired

data at line 405, including ->size and ->seqno fields.

After these checks, a second fetch (lines 446 and 447)

copies the data from bus->m_pdwGetRing to msg for

later use. This double fetch here is vulnerable because

the secondly fetched data in msg cannot be guaranteed

to satisfy the conditions at line 405. Once the ->size or

->seqno field of the secondly fetched message changes,

using that a message is likely to cause memory access

errors.

In order to prove this assumption, we fur-

ther trace how this function is called. As

Fig.10(b) shows, function saa7164_cmd_dequeue()

calls saa7164_bus_get() at line 161, and the fetched

message is stored in tRsp. Then, the seqno field of tRsp

is passed to function saa7164_cmd_free_seqno() (line

173), within which it is used to access an array (e.g.,

dev->cmd[seqno] at lines 48∼52). However, the mes-

sage is used without an additional validation, and if the

seqno field of the message is changed to a very large

value before the second fetch, an array over-access er-

ror could be caused. This case has been confirmed as a

vulnerability (CVE-2017-8831) by the maintainer and

fixed already.

5 Discussion

5.1 Findings

In this study, we propose the concept of hardware

double fetches and design a static pattern-matching ap-

proach to detect them. We identify 361 occurrences in

the I/O memory, and based on the investigation of the

results, we have the following findings.

1) Hardware double fetches truly exist in the I/O

memory and some of them can cause bugs or even vul-

nerabilities. The occurrences range from all three types

(i.e., status, control, and data) of register to the de-

vice memory. Among them, we find four previously un-

known double-fetch vulnerabilities (listed in Table 3).

With these vulnerabilities, attackers can cause over-

boundary accesses (buffer overflows) in the kernel by

simply changing the value from the device.

2) Status registers commit most of the hardware

double fetches we identify (65.9%, 238/361), but data

(b)(a)

Fig.10. Double-fetch vulnerability in the device memory. (a) How the peripheral data is double-fetched. (b) How the double-fetched
data is used.
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Table 3. Description of the Identified Double-Fetch Vulnerabilities

ID File Description

CVE-2017-8831 Linux-
4.10.1/drivers/media/pci
/saa7164/saa7164-bus.c

Function saa7164_bus_get() allows local users to cause a denial of service (out-of-
bounds array access) by changing a certain sequence-number value, aka. a “double
fetch” vulnerability

CVE-2017-9984 Linux-
4.10.1/sound/isa/msnd/
msnd pinnacle.c

Function snd_msnd_interrupt() allows local users to cause a denial of service (over-
boundary access) by changing the value of a message queue head pointer between
two kernel reads of that value, aka. a “double fetch” vulnerability

CVE-2017-9985 Linux-
4.10.1/sound/isa/msnd/
msnd midi.c

Function snd_msndmidi_input_read() allows local users to cause a denial of service
(over-boundary access) by changing the value of a message queue head pointer be-
tween two kernel reads of that value, aka. a “double fetch” vulnerability

CVE-2017-9986 Linux-4.10.1/sound/OSS/
msnd pinnacle.c

Function intr() allows local users to cause a denial of service (over-boundary access)
by changing the value of a message queue head pointer between two kernel reads of
that value, aka. a “double fetch” vulnerability

registers are more likely to cause buggy situations

(three have been found) as they hold critical data re-

lated to memory access, such as message length vari-

ables and queue pointers.

3) Configuration registers are relatively safe as the

kernel directs such registers rather than relies on them;

thus the corrupted data from a peripheral device can

hardly harm the kernel.

4) Device memory introduces the least hardware

double fetches (only one) because double-fetching large

data blocks is usually avoided by developers for the con-

cern of efficiency.

5.2 Evaluation

5.2.1 Efficiency

The automatic pattern-matching process of our ap-

proach takes approximately 28 minutes to run a test

on the whole Linux kernel of version 4.10.1 including

all the drivers. Our approach is much more efficient

than the dynamic approaches adopted by the prior tra-

ditional double fetch analysis. For example, Bochspwn

needs 15 hours to only boot the Windows kernel in their

simulator[3].

Although we rely on manual review to confirm the

bug, it is also efficient. Manually reviewing the 178 can-

didate files only takes us a few days, which is accept-

able, while building an automatic tool with high pre-

cision would take much longer time. Besides, the pre-

vious approach also needs to investigate about 200 KB

logs generated by the simulator[3]. Furthermore, manu-

ally reviewing the source code is helpful in extracting

the patterns as well as figuring out why they happen,

which is meaningful for a pilot work of such a new topic.

5.2.2 Effectiveness

Static approaches inevitably produce false positives

due to the lack of runtime information. However, our

static approach increases the code coverage without

losing too much precision. It successfully identifies

361 hardware double fetches from 42417 Linux source

files. Among them, four are confirmed as vulnerabili-

ties. Therefore, it is effective as a pilot study to prove

the concept of hardware double fetches rather than tho-

roughly detects them. We leave it to the future work

to reduce the false reports and improve the precision.

For the false positives, although most of the iden-

tified cases are not necessarily buggy, they should not

be simply regarded as false positives and removed be-

cause some of them have potential risks. For the hard-

ware double fetches in the static registers, one possible

way to leverage them is “fuzzing”. More specifically,

an attacker can use a piece of compromised hardware

to simulate the normal hardware and randomly switch

the values in the static registers. If dependent relations

exist among the checks of the status registers and the

value changes right between the two fetches of it, then

a hardware double fetch is leveraged. For the hard-

ware double fetches in the data registers, some of them

are non-buggy because the value from the hardware is

fetched twice but only one of them is used by the kernel;

thus, the data change from the hardware is ineffective.

Nevertheless, when the code is updated by the develo-

per without paying special attention and the double-

fetched values are cross-used (i.e., both values from the

two fetches are used), then the change of the data from

the hardware can cause data inconsistency for the ker-

nel use and a non-buggy hardware double fetch turns

into a buggy one. In such a case, the leverage also relies

on manipulating the external hardware or a simulation

of it. Although leveraging the hardware double fetches

is complicated compared with the traditional double

fetches owing to the manipulation of the hardware, it

brings high risks as people usually pay less attention to

such situations. Thus, the rest cases are still worthy.
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As for the false negatives, our approach increases

code coverage from two aspects. Firstly, it includes the

complete space of drivers for analysis without relying on

the specific hardware, which performs better than the

dynamic approaches that only cover limited driver code

in one execution. Secondly, it is based on the Coccinelle

engine, which provides path-sensitive analysis and fur-

ther improves the code coverage. We do not find any

false negatives during the manually checking of the ran-

dom samples from the source files.

5.2.3 Limitation

Our static pattern-matching approach relies on the

source code and cannot analyze the pre-compiled bina-

ries whose source code is unavailable. Therefore, it is

limited to the in-house testing for the developers before

the drivers are released.

5.3 Prevention

In order to prevent this hardware double-fetch prob-

lem, we can take measures from both the software and

the hardware.

In the software layer, developers can prevent double-

fetch situations by avoiding double-fetching the same

data. For double fetches that cannot be avoided, adding

validations after each fetch is a simple yet effective way

to prevent such bugs. However, additional validations

bring extra overhead, and it is not viable for situations

such as the consecutive reads in the status registers.

Thus, the effectiveness of software-based prevention is

limited.

Since the hardware double fetch problem is caused

by unexpected data changes from the hardware, if the

functionality and the integrity of the connected devices

are validated effectively every time when the connection

is established, problems are solved. To some extent, re-

searches on trusted hardware[18-19] and tamper-proof

hardware[20-21] are helpful. However, these techniques

also inevitably cause performance deduction; besides,

there is still a long way before these techniques are ap-

plied to industrial products. Therefore, hardware vali-

dation and tamper-protection still remain as problems,

especially in the era of IoT.

5.4 Future Work

We propose the hardware double-fetch problem in

this work and identify 361 occurrences, including four

vulnerabilities. We extract patterns of how hardware

double fetches happen and discuss the possibility of

causing bugs. The manual review process in our ap-

proach provides useful knowledge to this topic, which

is essential to this pilot work. In the future, we will

try to develop a more accurate and automatic tool to

replace the manual efforts in the bug confirmation pro-

cess. Besides, we will also pay attention to exploiting

such hardware double-fetch vulnerabilities and develop

practical schemes to prevent such problems.

6 Related Work

In this study, we propose the problem of hardware

double fetch and investigate 361 occurrences identified

by our static pattern-matching approach. So far, the

most related work to this topic includes the traditional

double fetch and the TOCTTOU.

Jurczyk and Coldwind[3] conducted the first sys-

tematic work on the double-fetch analysis in their

Bochspwn project. It was the first dynamic analysis to

detect double fetches based on memory access patterns.

They instrumented the Windows kernel to identify dou-

ble fetches dynamically by observing read operations on

the same user space address within a short time win-

dow. They found over 100 double fetch instances and

some of them are exploitable vulnerabilities. Wilhelm[4]

used an approach similar to the Bochspwn project to

analyze the memory access pattern of para-virtualized

devices’ backend components. His analysis identified 39

potential double fetch issues and discovered three novel

security vulnerabilities in security-critical backend com-

ponents. However, their approaches were limited to an

analysis of kernel code and drivers for which they had

the required hardware, and had severe runtime over-

head. In our work, we focus on the hardware double

fetch problem, which is similar to the traditional dou-

ble fetches but occurs in the I/O memory. Besides, we

propose a static pattern-matching approach to identify

the hardware double fetches, which could analyze all

the Linux drivers at one time without relying on the

corresponding hardware.

A TOCTTOU issue occurs when a program checks

for a particular characteristic of an object, so as to

take actions on the assumption that the characteristic

still holds, whereas it does not hold any longer[9]. The

data inconsistency in TOCTTOU is usually caused by

a race condition that results from improper synchro-

nized concurrent accesses to a shared object. There

are varieties of shared objects in the computer system,

such as files[9], sockets[10], and memory locations[22].

TOCTTOUs often occur in the Unix file system and

numerous approaches[11-15] have been proposed to solve
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these problems. Yang et al.[22] focused on the TOCT-

TOU problem at memory access level and proposed

concurrency attacks by exploiting the time window be-

tween the check and the use. However, they did not

consider the involvement of kernel. Watson[10] worked

on exploiting wrapper concurrency vulnerabilities that

come from system call interposition. He also pro-

posed the Time-of-Audit to Time-of-Use and Time-of-

Replacement to Time-of-Use issues. None of these prior

studies on TOCTTOU takes into consideration of the

hardware double fetch problem we propose.

Mulliner and Michéle[23] implemented a “Read-It-

Twice” (RIT) attack based on the observation that soft-

ware installation (and firmware upgrade) assumes that

the files on an attached mass-storage device will not

change between the check and the install. With an emu-

lated mass-storage device, they switched the content of

files to inject a shared object into a Samsung televi-

sion, which bypassed the security checks and gained

root privilege to jailbreak the device. However, RIT

targets at the content of files in the storage of the de-

vice, whereas the hardware double fetch problem we

proposed focuses on the data in the device register and

RAM.

Chou et al.[6] gave the first thorough study on faults

found in Linux, and they found that the error rate in

device drivers is about 10 times higher than that in any

other parts of the kernel. Ten years later, Palix et al.[7]

replayed Chou et al.’s work on new Linux versions re-

leased between 2003 and 2011 with Coccinelle engine,

and they pointed out that the kind of faults considered

ten years ago was still relevant, and were still present

in both new and existing files. Drivers still have the

largest number of faults in absolute terms. However,

their studies did not pay attention to the double fetch

problem in the I/O memory. We conduct the first study

on this problem and find vulnerable cases.

7 Conclusions

This work presented the first dedicated study of the

double fetch problem in the I/O memory (aka. the

hardware double fetch), which provides a new perspec-

tive to the double fetch problem by increasing the scope

to include peripheral devices. We proposed a static

pattern-matching approach to identify the hardware

double fetches from the Linux kernel. We categorized

the identified 361 occurrences and analyzed each cate-

gory the possibility of causing bugs. We also found four

previously unknown double-fetch vulnerabilities, which

have all been confirmed and fixed after reporting them

to the maintainers.
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