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Abstract: Fuzzing is an effective technology in software testing and security vulnerability detection.1

Unfortunately, fuzzing is an extremely compute-intensive job, which may cause thousands of2

computing hours to find a bug. Current novel works generally improve fuzzing efficiency by3

developing delicate algorithms. In this paper, we propose another direction of improvement in this4

field, i.e. leveraging parallel computing to improve fuzzing efficiency. In this way, we develop P-fuzz,5

a parallel fuzzing framework that can utilize massive distributed computing resources to fuzz. P-fuzz6

uses a database to share the fuzzing status such as seeds, the coverage information, etc. All fuzzing7

nodes get tasks from the database and update their fuzzing status to the database. Also, P-fuzz8

handles some data races and exceptions in parallel fuzzing. We compare P-fuzz with AFL and a9

parallel fuzzing framework Roving in our experiment. The result shows that P-fuzz can easily speed10

up AFL about 2.59X and Roving about 1.66X on average by using 4 nodes.11

Keywords: software testing; parallel fuzzing; AFL; vulnerability12

1. Introduction13

Fuzzing is an efficient method in software testing by providing unexpected inputs and monitoring14

for exceptions[2]. In this way, thousands of security vulnerabilities are discovered by fuzzing.15

According to the knowledge and information acquired from the target programs, fuzzing can be16

divided into white-box, black-box, and grey-box fuzzing. A state-of-the-art grey-box fuzzer American17

Fuzzy Lop (AFL)[6] collects the coverage information(edges in the target program are covered or uncovered),18

and stores it in a data structure bitmap to feedback further fuzzing.19

Nevertheless, fuzzers like AFL are simple and effective, they are still compute-intensive and20

cost a lot of CPU hours to fully test a program. Current novel works generally improve fuzzing21

efficiency by developing delicate algorithms[1][6][8]-[10]. Unlike all those works, we consider this22

efficiency problem of grey-box fuzzing in a different point of view. Instead of being limited to improve23

algorithms in a single computing node, we try to leverage more computing resources to parallelize the24

fuzzing tasks. In this way, we can trade resources for time to accelerate software testing. Our method25

is based on two observations. First, parallel computing is ubiquitous nowadays[20][21]. We can get26

massive cheap computing resource easily (e.g. by using the Amazon spot instance[11]). Second, time27

is valuable in software testing and security. Considering the situation, a newly developed software is28

about to be released, it is worthy to spend more money than usual to make the release on schedule.29

Besides, parallel fuzzing optimization is orthogonal with algorithm improving. Any improved fuzzing30

algorithm can be easily applied in a parallel fuzzing framework.31

However, current parallel fuzzing approaches have drawbacks. Grid fuzzer[12] leverages grid32

computing to parallelize fuzzing by distributing fuzzing tasks statically. This method is not suitable for33

grey-box fuzzing, as work cannot be statically determined beforehand due to the feedback mechanism34

in grey-box fuzzing. Liang et al.[13] presented a distributed fuzzing framework which can manage35
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computing resources in a cluster and schedule resources to many submitted fuzzing jobs. However, it36

does not intend to accelerate a single fuzzing job. Roving[14] and the work of Martijn[15] can parallel37

AFL to fuzz a single program with distributed computing nodes. However, they only parallelize the38

non-deterministic mutation part of AFL and fail to parallelize the deterministic mutation part. Also,39

they do not synchronize the coverage information which is a crucial part of grey-box fuzzers. PAFL[35]40

and Enfuzz[34] can parallelize several typical fuzzers together, which are proposed in 2018 and 2019.41

These two works are characterized by parallelizing diverse fuzzing tools to solve problems with the42

characteristics of different tools. However, these framework can not share and sychronize tasks and43

resources across machines.44

In this paper, we intend to design a parallel grey-box fuzzing framework and leverage parallel45

computing to speed up the fuzzing process. We need to solve the following questions in this research:46

1. How to synchronize and share fuzzing status, e.g. seeds(those test cases which trigger edges),47

the coverage information, etc. in a distributed system?48

2. How to balance the workload to different computing nodes in the distributed system?49

3. How to handle the data races and exceptions in a distributed system during fuzzing?50

We implement a parallel grey-box fuzzing framework P-fuzz to solve these questions. P-fuzz51

consists of computing nodes to accelerate fuzzing. To share seeds and the coverage information which52

is stored in the bitmap, we leverage a key-value database. A computing node fetches a seed from53

the database and begins its fuzzing process: Firstly, the node mutates the seed to generate test cases.54

Then the node sends test cases to the target program and monitors the execution of the target. When55

the node hits uncovered edges, it adds the corresponding test case to the database as a new seed and56

feedbacks this updated coverage information to the database to share benefits with other computing57

nodes. Also, we apply strategies to dynamically distribute fuzzing tasks to different nodes to achieve58

balancing the workload. To handle data races and exceptions, we analyze a set of specific cases and59

propose solutions for each case. In addition, we use Docker[16] technique to build the environment60

of fuzzing framework and copy this environment to all computing nodes in the distributed system61

automatically. P-fuzz is capable of parallelizing fuzzing tools across machines, which is different62

from other frameworks just sharing fuzzing status in a file system. Also, it provides the scalability of63

parallelizing various fuzzing tools.64

We evaluate P-fuzz in nine target programs and LAVA-M data benchmarks. The result shows that65

P-fuzz outperforms the AFL and Roving. Compared in bitmap density which reflects the coverage of66

target programs, P-fuzz enhances the bitmap density of AFL about 2.59X, and of Roving about 1.66X.67

It also triggers 49 crashes in target programs.68

There are four contributions in this work:69

• We design the method to share seeds and the coverage information with a distributed system to70

synchronize the fuzzing status.71

• We design the method to balance workload by giving fuzzing tasks to different computing nodes72

dynamically.73

• We handle data race cases and exceptions in the parallel fuzzing.74

• We implement the parallel fuzzing framework P-fuzz to enhance the fuzzing efficiency.75

2. Background76

2.1. The classification of fuzzing77

According to the knowledge and information acquired from the target programs, fuzzing can be78

divided into white-box, black-box, and grey-box fuzzing[33]. The white-box fuzzer has full knowledge79

of the source code (e.g. internal logic and data structures) and uses the control structure of the80

procedural design to derive test cases. In contrast, the black-box fuzzer does not have any knowledge81

of the target program, thus it generates test cases randomly and swiftly. The grey-box fuzzer combines82
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the efficiency and effectiveness of black-box fuzzers and white-box fuzzers, which masters limited83

knowledge of target programs. Currently, the grey-box fuzzing technique is practical and widely used84

in the software testing and vulnerability detection as it is lightweight, fast and easy-to-use[1].85

The grey-box fuzzing process usually contains three steps:86

1. A initial seed is selected from the prepared test cases set and mutated to generate a group of test87

cases.88

2. Generated test cases are fed to target programs. At the same time, the fuzzer collects the coverage89

information (paths, edges, etc.).90

3. The fuzzer utilizes the feedback information to select valuable test cases as new seeds (test cases91

that trigger new edges are considered as new seeds).92

In this paper, we focus on improving the efficiency of grey-box fuzzing technique.93

2.2. The details about AFL94

As a grey-box fuzzer, AFL shows its benefits in effectiveness and efficiency. For sharing the95

fuzzing status, there are two things in AFL we need to care about in detail: the seed and bitmap data96

structure.97

2.2.1. Seed98

Seed indicates a test case which can trigger the fuzzer to traverse new edges. A queue in AFL is99

maintained to store the seeds. A high-quality corpus of candidate files will be selected as interesting100

seeds for further fuzzing.101

2.2.2. Bitmap102

Bitmap is a data structure which stores the coverage information of fuzzing. The bitmap size103

of AFL is 64 Kilobytes. A byte in the bitmap indicates an edge, which connects two or more basic104

blocks of the target program. The eight bits in a byte describe how many times this edge is covered.105

We use a tuple to express a edge, for example, there are basic block A and B, then a tuple(A, B) means a106

edge from previous basic block A to current basic block B. If a test case covers a new edge, the bitmap107

will record this changed coverage information by updating the corresponding byte. A mechanism to108

index the bitmap is shown as Eq.1. By simply reading the bitmap, AFL knows whether a edge is new109

covered or not and decides to store or discard a test case[1].110

(A ⊕ B)%BITMAP_SIZE (1)

Moreover, AFL runs deterministic mutations and non-deterministic mutations. Deterministic111

mutation strategies produce test cases and small diffs between the non-crashing and crashing112

inputs[24]. Non-deterministic mutation strategies can make fuzzing achieve high coverage rapidly by113

random combining deterministic strategies. Roving[14] relies on the non-determinism of AFL to cover114

more edges faster. However, for fuzzing a target program whose input files are in a complex format,115

random mutations will destroy the format of files. Therefore, utilizing appropriate strategies to fuzz116

different programs is necessary.117

2.3. The discussion of parallel mechanism in fuzzing118

A computing node is capable of handling computing, sending or receiving information with119

other nodes, which is the basic element in a distributed system. In fact, just putting a testing task on a120

multi-core machine or a distributed system but running it on a single computing node is underutilizing121

the hardware. At this time, to parallel computing resources can make full use of hardware and bring122

profit to low-efficiency fuzzing process.123

Two fuzzing frameworks extend the parallel mechanism in AFL. One is Roving[14], which is124

implemented by running multiple copies of AFL on multiple computing nodes, all of them fuzzing the125
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same target. It benefits from the client-server structure which shares crashes, hangs, and queues of126

each client. Each computing node plays a role in a client or server. Every 300 seconds, clients update127

the fuzzing environment by uploading and downloading changes. The whole framework is scheduled128

by the central server. The other is the work of Martijn[15]. The main idea of this work is approximate129

to Roving, and the difference between them is the implementation.130

Although the two frameworks utilize computing resources and parallelize the fuzzing progress,131

which makes each client benefits from each other’s work. They have several drawbacks as below.132

• All of the clients are always fuzzing the same set of seeds.133

• They only parallelize the deterministic mutation part of AFL and fail to parallelize the134

deterministic mutation part.135

• They synchronize the shared fuzzing status in a fixed time period, but not immediately.136

• They ignore to share the coverage information.137

2.4. Data races138

In parallel computing, some uncontrolled accesses to shared data happen simultaneously, which139

results in race conditions[22].140

In this paper, we focus on the specific race cases in parallel fuzzing. The key to handle this141

problem is to tackle the sharing objects appropriately. Through observation, we list some typical race142

cases:143

2.4.1. Several computing nodes access to the same seed144

Accessing to the same seed during deterministic mutation phase produce massive repeated145

fuzzing, which is time-consuming.146

2.4.2. Several client nodes update the coverage information together147

As we mentioned in section 2.2, the coverage information is stored in the bitmap. Bitmaps from148

different computing nodes with different coverage information, which reflects on different changed149

bytes. Merging these bitmaps without controlling, later updated bitmap may cover some valuable bits150

others have updated before.151

To solve these race cases and exceptions, we propose a set of strategies which is shown in section152

3.153

3. Methodology154

To improve the fuzzing efficiency and make full use of computing resources, we design a parallel155

fuzzing framework P-fuzz. The overview of P-fuzz framework is shown in Fig.1. We leverage156

Database-centric architecture[23] that using a database to handle the communication of computing157

nodes. The computing node deployed the database is considered as a server. The database stores158

fuzzing status(including seeds and bitmap) to communicate with other computing nodes which are159

considered as clients. When new edges are covered by a client, the new coverage information and160

seeds are updated to the server immediately. To keep P-fuzz from unexpected situations, we set races161

and exceptions handling strategies in the server. For different target programs, we select different162

mutation strategies to fuzz.163

Fig.1 also reveals the fuzzing process. First, each client gets a seed, the occupied seeds are marked164

by a flag. Second, each client starts fuzzing. When some interesting new edges are covered by a client,165

it uploads seeds and the bitmap. A service is responsible for merging bitmap to avoid the data race.166

Then, other clients will receive the updated bitmaps.167
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Figure 1. The overview of P-fuzz framework

(a) The example of
distributing workloads
by previous works

(b) The example of
distributing workloads
by P-fuzz

Figure 2. Examples of balancing workloads

3.1. Dynamic fuzzing status synchronizing and workload balancing mechanism168

Computing resources and fuzzing tasks are two entities of parallel fuzzing system. And the most169

important work is to distribute fuzzing tasks to computing resources appropriately to achieve the170

balance. Previous studies[14][15] show us two drawbacks in tackling this work:171

• Underutilizing the computing resources which burdens the single core with many fuzzing tasks.172

• Sharing information (including seeds, queues, crashes and hangs) with each client but not173

distributing them, which may lead to all computing nodes do repeated work and do not fully174

reflect the advantages of parallelization. This case is depicted in Fig.2(a).175

We leverage Database-centric[23] architecture to schedule workloads and synchronize the fuzzing176

status. A server with a database acts as the core of the whole system, and other computing nodes act177

as clients to communicate with the database. To make full use of computing resources and enhance the178

fuzzing efficiency, we schedule the fuzzing tasks by letting each client fuzz different seeds(Fig.2(b)).179

To balance the workload, each client node will receive a new seed after completing fuzzing a seed180

dynamically.181

We share seeds and the bitmap in the database. Also, we mark the sharing seeds with flags and182

timestamps in the database, to identify whether this seed has been occupied by a client. Furthermore,183

we start a service to monitor the server which can solve the data race problem. In this way, all clients184

always work for valuable tasks by the scheduling mechanism of P-fuzz.185

3.2. Races and exceptions handling strategies186

3.2.1. Case 1: several clients access to the same seed.187

As above mentioned, P-fuzz shares seeds produced by each client and stores them into a database.188

It schedules different clients to access to different seeds to enhance the fuzzing efficiency. However,189

when several clients access to a seed simultaneously, a data race happens.190
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To alleviate this situation, we set a flag attribute attaches to the seed. The flag marks whether this191

seed is being fuzzed by a client. According to whether a seed is free or occupied, its flag is set to “0” or192

“1”. A client checks the flag when it chooses seeds. If the flag of a seed is “1”, the client will choose193

other seeds to fuzz.194

3.2.2. Case 2: several clients update the bitmap in the database together.195

We store the bitmap as a record in the database for sharing the coverage information. A data race196

happens as shown in Fig.3. Elements in the bitmap with “1” or “0” represent the edge uncovered or197

covered. The figure reveals that two clients update their new bitmaps (Fig.3(b)(c)). If we do not control198

the merging process, just merge the bitmap of client1 then client2, some valuable information will get199

lost like Fig.3(d).200

(a) the origin
bitmap

(b) the bitmap
updated from
client1

(c) the bitmap
updated from
client2

(d) the final
bitmap(a "0" is
covered)

Figure 3. A race of updating bitmap from different clients

To alleviate this situation, we start a service in the server to manage the merging operation. The201

service builds a queue to store the bitmap temporarily. When bitmaps from different clients come up202

to the database, they are enqueued according to the time order. The database merges these enqueued203

bitmaps by "AND(&)" operation one by one so that the bitmap maintains all the necessary information.204

3.2.3. Case 3: a client quits fuzzing accidentally but it does not finish a complete fuzzing round.205

As mentioned above, we set a flag to mark whether the seed is occupied by a client. However,206

in parallel computing, a client sometimes quits with exceptions. At this time, the flag is “1” but the207

fuzzing process of the corresponding seed is not finished. Here, we consider a complete fuzzing round208

is that a seed which is fuzzed in a whole deterministic mutation process.209

To solve this problem, we put a timestamp when the flag is set to “1”. We also monitor if the210

fuzzing is overtime with the timestamp. This strategy assures exceptions will not disturb the parallel211

fuzzing.212

3.3. Optimization213

3.3.1. Immediate response to update214

Different from Roving and the work of Martijn which synchronize the sharing data in a fixed time215

period(such as 300 seconds in Roving), P-fuzz updates new seeds and bitmap data to the database216

when AFL produces them. The prompt action makes all clients in the system get updated seeds and217

the feedback information immediately.218

3.3.2. The selection of mutation strategies219

According to the introduction in section 2, non-deterministic and deterministic mutation strategies220

do well in different targets. Therefore, P-fuzz adopts both of them to fuzz. For most of the target221

programs, we set one client to do deterministic mutations and others to do non-deterministic mutations222

to cover more edges and keep the efficiency of parallel fuzzing. For those target programs which are223

format-awareness, we set more clients to do deterministic mutations first to keep the format of files,224
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and less clients do non-deterministic mutations. The quantity of clients to do which kind of mutation225

is determined by target programs.226

4. Implementation227

4.1. The steps of implementation228

The steps of implementing the P-fuzz enviroment is shown below:229

• Setting up and configuring the database in the server.230

• Configuring the service in the server.231

• Building a fuzzing environment(the AFL engine) in a Docker container.232

• Deploying the environment to all clients in a distributed system automatically.233

• Choosing a target program and starting fuzzing in each client node.234

• Each client updates new seeds and changed bitmap during fuzzing.235

• Getting fuzzing results from the server.236

4.2. Server237

The server is the core of the whole fuzzing system since the P-fuzz is based on the Database-centric238

architecture. We deploy a MongoDB database on the server to store the sharing data.

(a) the seed collection in the
database

(b) the bitmap collection in the
database

Figure 4. Two collections of database
239

4.2.1. Database240

MongoDB[32] is an open-source document database, which is no-SQL with high performance,241

high availability and automatic scaling. A collection in a database gathers a set of data in any types.242

As shown in Fig.4(a)(b), we set two types of collections in the database. One is “seed”, To avoid243

the situation that clients send seeds which have the same content, the first attribute is a hash value of244

the seed content. The second attribute records the name of the seed. The third attribute records the245

content of the seed. The fourth attribute is a flag to mark whether the seed is being fuzzed, and the last246

attribute is a timestamp, which is used to mark the time of a fuzzing start.247

The other type of collection is “bitmap”. In the whole database, there is only one bitmap collection,248

because all clients need to share this bitmap to acquire the whole coverage information of the system.249

The first attribute in this collection is all bits information of the sharing bitmap. And the second250

attribute is the timestamp to record the latest updating time of bitmap.251

4.2.2. Service252

As we discuss in section 3, when several clients update bitmap together, some bits in the bitmap253

will get lost. In order to solve this race, we start a service in the server to manage the merging operation.254

The service maintains a queue to store temporarily the coming bitmaps from clients according to the255

time order. Then the service merges these bitmaps in the queue by “AND”(&) operation.256
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Table 1. Experiment results of three frameworks on nine target programs and LAVA-M data
benchmarks

Program AFL Roving P-fuzz
density inputs crashes speed density inputs crashes speed density inputs crashes speed

nm 3.92 950 0 1089 6.57 2967 0 9928 6.76 5091 0 7351
strings 0.16 64 0 1022 0.16 395 0 4521 0.16 143 0 5011

objdump 8.48 1923 0 630 10.75 3777 0 12352 12.49 7283 0 5612
size 3.54 605 0 2648 6.64 2907 0 11204 6.15 8723 0 8051

readelf 7.27 1747 0 1219 12.1 6446 0 6252 9.24 1034 0 7006
tiffinfo 0.04 9 0 4001 0.04 10 0 15903 4.81 754 0 8603

bmp2info 0.61 480 25 228 0.6 1826 26 2836 3.56 201 38 6488
tcpdump 3.61 775 0 1321 11.2 4072 0 5472 36.77 17926 0 4812

nasm 8.34 2531 0 1337 10.28 2528 0 3362 10.56 9152 0 2914
base64 0.58 389 0 368 0.58 788 0 8345 1.15 678 2 5921

md5sum 0.83 156 0 206 1.01 2701 0 4366 0.86 412 0 688
uniq 0.36 57 0 783 0.36 188 1 3624 0.37 143 1 3200
who 2.46 178 0 1023 2.47 1008 1 6200 3.21 532 8 7722

4.3. Client257

We choose a set of computers as clients. To build a fuzzing environment automatically, we utilize258

the ability of Docker. A Docker container is a lightweight package of software that includes everything259

needed to run an application[16]. We first configure a container with the AFL engine and its required260

environment. Based on the container, we use the Docker swarm to duplicate the fuzzing environment261

to all clients in the system.262

At the start of fuzzing, each client downloads the chosen target program and a seed from the263

central database. When some interesting edges are found by a client, it updates these new seeds and264

the bitmap to the central database. Other clients will share the updated bitmap immediately. P-fuzz265

depends on this mechanism to share data in parallel fuzzing.266

5. Experiment267

5.1. Experiment setup268

We conduct experiments on a small-scale cluster which consists of eight desktops with Intel Core269

i7 3.4GHz 8 Core CPU and 8GB RAM running Ubuntu 16.04. In order to compare P-fuzz with another270

parallel fuzzing framework, we divide the eight desktops into two groups for testing two parallel271

fuzzing frameworks. We choose five programs in GNU Binutils[17](nm, objdump, readelf, size and272

strings), LAVA-M data set[18](base64, md5sum, uniq, and who), two image processing tools(bmp2tiff273

and tiffinfo), and tcpdump as our target programs. Thus, we have 13 target programs to conduct274

experiments. We compare P-fuzz with AFL and a previous parallel fuzzing framework Roving for two275

hours. To prove the improvement in efficiency of P-fuzz, we record four indicators for each experiment:276

• Bitmap density. This is an important indicator to measure the coverage of grey-box fuzzers. As277

section.2.2 mentioned, a byte in the bitmap indicates an edge, which connects two or more basic278

blocks of the target program. The bitmap density indicates the ratio of changed bytes in bitmap279

takes in the size of bitmap.280

• Crashes. This is the number of unique crashes occur when executing the programs. Crashes281

are generated from test cases trigger target programs to produce a fatal signal (e.g. SIGSEGV,282

SIGILL, SIGABRT).283

• Speed. We measure the speed by how many test cases have been executed per second(exe/s).284

• Inputs. This is an indicator to calculate the quantity of seeds generated in the queue.285

Before we start fuzzing, we need to compile target programs with AFL’s compiler called afl-gcc.286

afl-gcc instruments the source code of targets and produces target binary files.287
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5.2. Results288

To evaluate the efficiency, we take a 2-hour rapid experiment on P-fuzz, AFL in a single node, and289

Roving to test the above indicators of nine target programs and LAVA-M data benchmarks. The result290

is listed in Table 1.291

As shown in the table, we can see P-fuzz covers more bytes of bitmap than AFL and Roving in292

most of target programs. The bitmap density of P-fuzz is 2.59X higher than AFL and 1.66X higher than293

Roving on average. Especially, the bitmap density reaches 36.77% in “tcpdump”, which almost triples294

the bitmap density of Roving. It is worth mentioning that in two image processing tools “tiffinfo”295

and “bmp2tiff”, P-fuzz also shows its ability to handle format-awareness programs by utilizing296

deterministic mutation strategies. The bitmap density upper limits of both AFL and Roving in “tiffinfo”297

and “bmp2tiff” are 0.04% and 0.61%, while P-fuzz reaches 4.8% and 3.56% respectively. However, the298

three frameworks get similar bitmap densities in "strings" and LAVA-M data benchmarks. The reason299

is that "strings" is a target program with fewer paths, all these three framework is easy to reach the300

covergence status. On the other hand, LAVA-M is a designed data set, parallel fuzzing but without the301

improvement in the algorithm is hard to cover more edges.302

Moreover, the rapid experiment in just 2-hour is hard to find crashes. With the high-efficiency303

characteristic, P-fuzz speeds up the whole fuzzing process and find more crashes than AFL and Roving304

in such a short time. In “who”, P-fuzz triggers eight crashes while Roving only one crash. Also, P-fuzz305

finds 38 crashes in “bmp2tiff”, more than AFL’s 25 crashes and Roving’s 26 crashes.306

The “speed” attribute in Table 1 is measured by the number of test cases executed per second.307

Because of parallelizing the fuzzing, P-fuzz easily gains an almost 4X speed up. However, the average308

speed is a little lower than the Roving. The reason is that Roving uses non-deterministic mutations in309

the whole fuzzing process, while P-fuzz combines the two mutation strategies.310

The bitmap density measures the edge coverage of grey-box fuzzing. The increment rate of bitmap311

density also reflects the efficiency of tools. We select the bitmap density data of “objdump”, which is312

shown in Fig. 5 to prove the high efficiency of P-fuzz. The figure reveals the bitmap density increment313

during the start 1000 seconds of the experiment. P-fuzz surpasses AFL and Roving rapidly in five314

seconds and keeps increasing.

Figure 5. Comparison of bitmap density on objdump by AFL, Roving, and P-fuzz
315

5.3. Analysis316

As shown in Table 1, P-fuzz outperforms the other two framework. We try to analyze the strengths317

of P-fuzz.318

5.3.1. P-fuzz vs. AFL in a single node:319

The fuzzing efficiency of P-fuzz outperforms AFL. AFL in a single node is the baseline of320

experiments. We can see from the results, P-fuzz outperforms AFL by applying parallel computing321

technique. In the 2-hour fuzzing, the edges P-fuzz covered and the paths produced are higher than322

AFL.323
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5.3.2. P-fuzz vs. Roving:324

Roving does not share the feedback information of grey-box fuzzing. Roving shares test cases,325

queues, crashes and hangs with each client in the system by synchronizing these fuzzing status to the326

server. However, the coverage information is also significant to fuzzing. P-fuzz uploads the bitmap as327

the coverage information to share edges that the whole framework has found with each client.328

The mechanism of Roving takes up too much memory. The sharing mechanism of Roving is329

synchronizing all the test cases produced by four client nodes to the server, whether the test case is330

the same with others or not. However, when fuzzing target programs which contain a large number331

of edges, the server of Roving is shut down, because it does not support to handle too many files.332

Compared with Roving, P-fuzz just uploads test cases as records to the database, which saves massive333

storage space than Roving.334

The mutation strategy of Roving is monotonous. Roving only adopts non-deterministic335

mutation to make parallel fuzzing more randomly and rapidly. The executing speed of Roving336

is much higher than P-fuzz actually. However, the benefits of deterministic mutation are discarded337

which leads to some complex programs are ignored by Roving.338

6. Discussion339

6.1. Advantage340

Inheriting the effectiveness of AFL, P-fuzz improves the efficiency of grey-box fuzzing. The341

advantages of P-fuzz are discussed below:342

1. Utilizing the numerous computing resources to assist grey-box fuzzing. Other work strives to343

improve the algorithm in a single computing node. These works actually enhance fuzzing in344

different sides. Because of the orthogonality of the improvement of algorithm and computing345

resources, the advanced works can be applied in parallel fuzzing.346

2. Balancing the workload and sharing fuzzing status appropriately. By distributing the347

workload to all client nodes in the system, P-fuzz makes full use of the computing resources.348

P-fuzz will not waste more time to edges which have covered by getting the bitmap information349

shared by all clients.350

3. Avoiding data races and exceptions the parallel fuzzing. The data races and exceptions in351

parallel fuzzing influence not only the accuracy of results but also the efficiency of fuzzing.352

P-fuzz focuses on some typical cases and adopts valid strategies to avoid them.353

6.2. Limitation354

Although P-fuzz enhances the efficiency of AFL and outperforms the parallel fuzzing framework355

Roving, still a limitation exists in this work. For some tiny target programs, all edges can be covered356

rapidly. It is not worthy to use too many hardware overheads to exchange a little improvement in357

efficiency. We should try to find a balance to make a tradeoff between the overhead of hardware358

resources and efficiency.359

6.3. Future work360

In our further work, we will enhance the efficiency and effectiveness of P-fuzz in two direction.361

One is incorporating the advanced algorithm of fuzzing. Because of the orthogonality of parallel362

fuzzing optimization and algorithm improvement, we can apply an improved algorithm of AFL or363

some other techniques such as concolic execution[31] in P-fuzz.364

The other direction is putting the parallel fuzzing into a large-scale cluster. In this case, the ability365

of database interaction may become the bottleneck of parallel fuzzing. Also, the data race in fuzzing366

will occur more frequently. However, we should focus on the possibility of significantly improving367
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the efficiency by gathering the power of massive computing nodes. Therefore, how to tackle these368

bottlenecks is we should strive for.369

7. Related work370

7.1. Fuzzing tools371

Fuzzing tools can be classified into three types based on the knowledge and information acquired372

from the source code of target program, they are white-box, black-box, and grey-box fuzzer.373

7.1.1. White-box fuzzing374

The white-box fuzzer has full knowledge of source code (eg. internal logic and structure) and375

uses the control structure of the procedural design to derive test cases. Current white-box fuzzing376

tools contains Sage[3], Angr[25] and KLEE[26] etc.377

7.1.2. Black-box fuzzing378

The black-box fuzzer does not have any knowledge of source code but it generates test cases379

randomly and swiftly. Some typical fuzzers such as Radamsa[27], zzuf[28] and Peachfuzz[29] which380

did remarkable work in this field. Peachfuzz[29] have the ability to fuzz programs which are381

format-awareness by providing description files.382

7.1.3. Grey-box fuzzing383

The grey-box fuzzer try to combine the efficiency and effectiveness of black-box fuzzers384

and white-box fuzzers, which masters limited knowledge of the internal working of the target385

program. Through collecting the feedback information of target programs, grey-box fuzzers show386

the competitiveness of mutating test cases with the valid guidance. It is implemented by lightweight387

instrumentation or other mechanisms to get the feedback of program executions, such as code388

coverage for the fuzzing process. AFL[6] is a state-of-the-art grey-box fuzzer whose principles389

are speed, reliability, and ease of use. AFL instruments the compiled program to get the edge390

coverage information. Bohme et al. designed AFLfast[8] which intended to fuzz edges covered with391

low-frequency. Gan et al introduced CollAFL[9], which mitigated the collision of bitmap data structure392

by providing more accurate coverage information. Bohme also implemented a directed grey-box393

fuzzing tool AFLGo[10] towards the dangerous locations which tended to produce vulnerabilities.394

Zhang[1] et al. leveraged hardware mechanism (Intel Processor Trace) to collect edge information,395

and fed this information back to the fuzzing process. All of these extensions gained higher coverage396

and found more bugs than AFL. However, these work based on improving algorithms are still397

compute-intensive and the efficiency is limited.398

7.2. Other fuzzing tools based on parallel technique399

Some previous works try to leverage parallel computing technique to speed up the fuzzing400

process. The technique collects a group of computing resources to decompose heavy fuzzing tasks.401

To enhance the efficiency of symbolic execution, Cloud9[5] shares the searching scope into402

some pieces, each computing node shares the workload. Liang[13] also solved the challenge of path403

explosion by putting results into different computing nodes, this method is similar to our mechanism404

of distributing seeds.405

For the parallel coverage-based grey-box fuzzing, more attention is paid to distribute the fuzzing406

test cases to balance the system workload. Xie[12] used grid computing for large scale fuzzing in 2010,407

which reduce almost two-thirds of fuzzing time. It was implemented by dividing fuzzing jobs into408

tasks, storing them in a server and scheduling remote clients to download them. ClusterFuzz[30] is a409

scalable fuzzing infrastructure which supports for coverage-based grey-box fuzzing (e.g. libFuzzer410
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and AFL) and black-box fuzzing. It is used by Google for fuzzing the Chrome browser and serves as411

the fuzzing backend for OSS-Fuzz.412

8. Conclusion413

In this paper, we leverage the parallel computing technique to improve the efficiency of grey-box414

fuzzing, which is different from traditional developing fuzzing algorithms. We implement the parallel415

fuzzing framework P-fuzz by applying the Database-centric architecture, which consists of a database416

server and several clients. P-fuzz balances the workload by giving different clients different seeds. Also,417

it shares seeds and the bitmap data with each client to synchronize the fuzzing status. Futhermore,418

P-fuzz handles data races and exceptions in the parallel fuzzing. For fuzzing different types of targets,419

P-fuzz selects appropriate mutation strategies.420

Finally, we conduct experiments to compare P-fuzz with AFL in a single node and a parallel421

fuzzing framework Roving in nine target programs and LAVA-M data benchmarks. The experimental422

result proves that P-fuzz improves the efficiency of the grey-box fuzzer. From the result, we believe423

that the use of computing resources in software testing is a worthwhile exploration and widely used424

ideas.425
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